(EU) 2017/654Nařízení Komise v přenesené pravomoci (EU) 2017/654 ze dne 19. prosince 2016, kterým se doplňuje nařízení Evropského parlamentu a Rady (EU) 2016/1628, pokud jde o technické a obecné požadavky na mezní hodnoty emisí a schválení typu spalovacích motorů v nesilničních mobilních strojích

Publikováno: Úř. věst. L 102, 13.4.2017, s. 1-333 Druh předpisu: Nařízení v přenesené pravomoci
Přijato: 19. prosince 2016 Autor předpisu: Evropská komise
Platnost od: 3. května 2017 Nabývá účinnosti: 3. května 2017
Platnost předpisu: Ano Pozbývá platnosti:
Původní znění předpisu

Text předpisu s celou hlavičkou je dostupný pouze pro registrované uživatele.



NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) 2017/654

ze dne 19. prosince 2016,

kterým se doplňuje nařízení Evropského parlamentu a Rady (EU) 2016/1628, pokud jde o technické a obecné požadavky na mezní hodnoty emisí a schválení typu spalovacích motorů v nesilničních mobilních strojích

EVROPSKÁ KOMISE,

s ohledem na Smlouvu o Fungování Evropské unie,

s ohledem na nařízení Evropského parlamentu a Rady (EU) 2016/1628 ze dne 14. září 2016 o požadavcích na mezní hodnoty emisí plynných a tuhých znečišťujících látek a schválení typu spalovacích motorů v nesilničních mobilních strojích, o změně nařízení (EU) č. 1024/2012 a (EU) č. 167/2013 a o změně a zrušení směrnice 97/68/ES (1), a zejména na čl. 24 odst. 11, čl. 25 odst. 4 písm. a), b a c), čl. 26 odst. 6, čl. 34 odst. 9, čl. 42 odst. 4, čl. 43 odst. 5 a článek 48 uvedeného nařízení,

vzhledem k těmto důvodům:

(1)

Za účelem dotvoření rámce stanoveného nařízením (EU) 2016/1628 je nutné stanovit technické a obecné požadavky a zkušební metody týkající se mezních hodnot emisí a postupů EU schválení typu spalovacích motorů pro nesilničních mobilní stroje, opatření týkající se shodnosti výroby a požadavky a postupy týkající se technických zkušeben pro tyto motory.

(2)

Rozhodnutím Rady 97/836/ES (2) přistoupila Unie k Dohodě Evropské hospodářské komise Organizace spojených národů (EHK OSN) o přijetí jednotných technických pravidel pro kolová vozidla, zařízení a části, které se mohou montovat nebo užívat na kolových vozidlech, a o podmínkách pro vzájemné uznávání schválení typu udělených na základě těchto pravidel.

(3)

Aby bylo zajištěno, že ustanovení o konstrukci motorů určených pro nesilniční mobilní stroje odpovídají technickému pokroku, měly by se, pokud jde o některé požadavky, stát použitelnými poslední verze norem CEN/Cenelec nebo ISO, které jsou přístupné veřejnosti.

(4)

Významnou částí postupu EU schválení typu je kontrola shodnosti motorů s příslušnými technickými požadavky v průběhu celého výrobního procesu. Proto by postupy kontroly shodnosti výroby měly být dále zlepšeny a sladěny s přísnějšími postupy použitelnými pro silniční vozidla, aby se zvýšila celková efektivita postupu EU schválení typu.

(5)

Aby se zajistilo, že technické zkušebny budou splňovat stejně vysokou úroveň výkonnostních norem ve všech členských státech, mělo by toto nařízení stanovit harmonizované požadavky, jež musí technické zkušebny splňovat, a rovněž postup posuzování uvedené shody a akreditace uvedených zkušeben.

(6)

V zájmu jasnosti je vhodné sladit číslování zkušebních postupů v tomto nařízení s číslováním v celosvětovém technickém předpise č. 11 (3) a v předpise EHK OSN č. 96 (4),

PŘIJALA TOTO NAŘÍZENÍ:

Článek 1

Definice

Použijí se tyto definice:

(1)

„Wobbeho indexem“ nebo „W“ se rozumí poměr odpovídající výhřevnosti plynu na jednotku objemu k druhé odmocnině poměrné hustoty plynu za stejných referenčních podmínek;

Formula

(2)

„faktorem posunu λ“ nebo „Sλ“ se rozumí výraz, který popisuje požadovanou pružnost systému řízení motoru z hlediska změny poměru přebytku vzduchu λ, jestliže motor pracuje s plynem rozdílného složení, než má čistý methan;

(3)

„režimem kapalného paliva“ se rozumí normální provozní režim motoru dual fuel, v němž motor není poháněn plynným palivem za žádných provozních podmínek motoru;

(4)

„režimem dual fuel“ se rozumí normální provozní režim motoru dual fuel, během nějž je za určitých provozních podmínek motor poháněn současně kapalným a plynným palivem;

(5)

„systémem následného zpracování pevných částic“ se rozumí systém následného zpracování výfukových plynů určený ke snížení emisí pevných znečišťujících látek pomocí mechanické, aerodynamické, difúzní nebo inerční separace;

(6)

„regulátorem“ se rozumí zařízení nebo regulační strategie, které automaticky reguluje otáčky motoru nebo zatížení motoru, jiné než omezovač nadměrných otáček, nainstalované v motoru kategorie NRSh a omezující maximální otáčky motoru pouze za účelem zabránění provozu motoru při otáčkách překračujících určitou mez;

(7)

„teplotou okolí“ se rozumí, ve vztahu k laboratornímu prostředí (např. místnost nebo komora pro vážení filtru), teplota v uvedeném laboratorním prostředí;

(8)

„základní strategií pro regulaci emisí“ nebo „BECS“ se rozumí strategie pro regulaci emisí, která je aktivní v celém rozsahu otáček a zatížení, ve kterém je motor provozován, není-li aktivována pomocná strategie pro regulaci emisí (AECS);

(9)

„činidlem“ se rozumí jakékoli spotřebitelné nebo neobnovitelné médium potřebné a používané pro účinné fungování systému následného zpracování výfukových plynů;

(10)

„pomocnou strategií pro regulaci emisí“ nebo „AECS“ se rozumí strategie pro regulaci emisí, která se aktivuje a dočasně upravuje základní strategii pro regulaci emisí (BECS) za specifickým účelem nebo v reakci na specifický soubor okolních a/nebo provozních podmínek a která je aktivní pouze za těchto provozních podmínek;

(11)

„osvědčeným technickým úsudkem“ se rozumí úsudek, který je v souladu s všeobecně uznávanými vědeckými a technickými principy a dostupnými relevantními informacemi;

(12)

„horními otáčkami“ nebo „nhi“ se rozumí nejvyšší otáčky, při kterých má motor 70 % maximálního výkonu;

(13)

„dolními otáčkami“ nebo „nlo“ se rozumí nejnižší otáčky, při kterých má motor 50 % maximálního výkonu;

(14)

„maximálním výkonem“ nebo „Pmax“ se rozumí maximální výkon v kW podle návrhu výrobce;

(15)

„ředěním části toku“ se rozumí metoda analýzy výfukového plynu, při níž je část celkového toku výfukového plynu před dosažením filtru pro odběr vzorků pevných částic oddělena a následně mísena s příslušným množstvím ředicího vzduchu;

(16)

„posunem“ se rozumí rozdíl mezi signálem nuly nebo kalibrace a příslušnou hodnotou udanou měřicím přístrojem bezprostředně po jeho použití ve zkoušce emisí;

(17)

„kalibrací pro plný rozsah“ se rozumí seřízení přístroje tak, aby dával správnou odezvu na kalibrační standard, který odráží 75 % až 100 % maximální hodnoty rozsahu přístroje nebo očekávaného rozsahu použití;

(18)

„kalibračním plynem pro plný rozsah“ se rozumí směs čištěných plynů používaná ke kalibrování analyzátorů plynu pro plný rozsah;

(19)

„filtrem HEPA“ se rozumí filtr znečišťujících částic s vysokou účinností, který má počáteční minimální účinnost zachycování 99,97 % podle normy ASTM F 1471-93;

(20)

„kalibrací“ se rozumí proces nastavení odezvy měřícího systému na vstupní signál, tak aby se jeho výstupní hodnoty shodovaly s referenčními signály v příslušném rozsahu;

(21)

„specifickými emisemi“ se rozumí hmotnost emisí vyjádřená v g/kWh;

(22)

„požadavkem operátora“ se rozumí vstup zadaný operátorem motoru k řízení výstupu motoru;

(23)

„otáčkami maximálního točivého momentu“ se rozumí otáčky motoru, při kterých je dosaženo maximálního točivého momentu podle návrhu výrobce;

(24)

„regulovanými otáčkami motoru“ se rozumí provozní otáčky motoru, když jsou regulovány namontovaným regulátorem;

(25)

„volnými emisemi z klikové skříně“ se rozumí jakýkoli tok z klikové skříně motoru, emitovaný přímo do okolního prostředí;

(26)

„sondou“ se rozumí první část potrubí, kterou se odebíraný vzorek vede do další části systému pro odběr vzorků;

(27)

„zkušebním intervalem“ se rozumí doba, během které se určují emise specifické pro brzdění;

(28)

„nulovacím plynem“ se rozumí plyn, který při vstupu do analyzátoru vyvolá jako odezvu nulovou hodnotu;

(29)

„nastavením na nulu“ se rozumí seřízení přístroje tak, že dává odezvu nula na nulovací kalibrační standard, jako je čištěný dusík nebo čištěný vzduch;

(30)

„nesilničním zkušebním cyklem v ustáleném stavu s proměnnými otáčkami“ (dále jen „NRSC s proměnnými otáčkami“) se rozumí nesilniční zkušební cyklus, který není NRSC s konstantními otáčkami;

(31)

„nesilničním zkušebním cyklem v ustáleném stavu s konstantními otáčkami“ (dále jen „NRSC s konstantními otáčkami“) se rozumí jakýkoli z těchto nesilničních zkušebních cyklů v ustáleném stavu definovaných v příloze IV nařízení (EU) 2016/1628: D2, E2, G1, G2 nebo G3;

(32)

„aktualizací záznamu“ se rozumí frekvence, s jakou analyzátor zaznamenává nové, průběžně se měnící údaje;

(33)

„kalibračním plynem“ se rozumí čištěná směs plynů používaná ke kalibrování analyzátorů plynu;

(34)

„stechiometrickým“ se rozumí zvláštní poměr vzduchu a paliva, u kterého by při plné oxidaci paliva nezůstal žádný zbytek paliva nebo kyslíku;

(35)

„úložným médiem“ se rozumí filtr částic, vak k jímání vzorků, nebo jakékoli jiné odběrné zařízení používané pro odběr vzorků;

(36)

„ředěním plného toku“ se rozumí metoda míšení toku výfukového plynu s ředicím vzduchem před oddělením části toku zředěného výfukového plynu pro účely analýzy;

(37)

„dovolenou odchylkou“ se rozumí interval, ve kterém musí ležet 95 % zaznamenaných hodnot určité veličiny, zbývajících 5 % zaznamenaných hodnot se od tohoto intervalu může odchylovat;

(38)

„servisním režimem“ se rozumí zvláštní režim motoru dual fuel, který se aktivuje pro účely opravy či přemístění nesilničního mobilního stroje na bezpečné místo, není-li provoz v režimu dual fuel možný.

Článek 2

Požadavky týkající se jiných specifikovaných paliv, směsí paliv nebo emulzí paliv

Referenční paliva a jiná specifikovaná paliva, směsi paliv nebo emulze paliv zahrnuté výrobcem v žádosti o EU schválení typu podle čl. 25 odst. 2 nařízení (EU) 2016/1628 musí splňovat technické vlastnosti a musí být popsány v dokumentaci výrobce, jak je stanoveno v příloze I tohoto nařízení.

Článek 3

Opatření ohledně shodnosti výroby

Za účelem zajištění shody vyráběných motorů se schváleným typem v souladu s čl. 26 odst. 1 nařízení (EU) 2016/1628 přijmou schvalovací orgány opatření a dodržují postupy stanovené v příloze II tohoto nařízení.

Článek 4

Metodika pro úpravu výsledků laboratorních zkoušek emisí, aby zohledňovaly faktory zhoršení

Výsledky laboratorních zkoušek emisí se upraví tak, aby zohledňovaly faktory zhoršení, včetně těch, které se týkají měření počtu částic (PN) a motorů spalujících plynná paliva podle čl. 25 odst. 3 písm. d), čl. 25 odst. 4 písm. d) a e) nařízení (EU) 2016/1628, v souladu s metodikou stanovenou v příloze III tohoto nařízení.

Článek 5

Požadavky týkající se strategií pro regulaci emisí, opatření pro regulaci emisí NOx a opatření pro regulaci emisí částic

Měření a zkoušky týkající se strategií pro regulaci emisí podle čl. 25 odst. 3 písm. f) bodu i) nařízení (EU) 2016/1628 a opatření pro regulaci emisí NOx podle čl. 25 odst. 3) písm. f) bodu ii) uvedeného nařízení a opatření pro regulaci emisí pevných znečišťujících látek, jakož i dokumentace požadovaná k jejich doložení se provádějí v souladu s technickými požadavky stanovenými v příloze IV tohoto nařízení.

Článek 6

Měření a zkoušky týkající se oblasti spojené s nesilničním zkušebním cyklem v ustáleném stavu

Měření a zkoušky týkající se oblasti podle čl. 25 odst. 3 písm. f) bodu iii) nařízení (EU) 2016/1628 se provádějí v souladu s podrobnými technickými požadavky stanovenými v příloze V tohoto nařízení.

Článek 7

Podmínky a metody pro provádění zkoušek

Podmínky pro provádění zkoušek podle čl. 25 odst. 3 písm. a) a b) nařízení (EU) 2016/1628, metody pro určení nastavení zatížení a otáček motoru podle článku 24 uvedeného nařízení, metody pro započítání emisí z klikové skříně podle čl. 25 odst. 3 písm. e) bodu i) uvedeného nařízení a metody pro určování a započítání kontinuální a periodické regenerace systémů následného zpracování výfukových plynů podle čl. 25 odst. 3 písm. e) bodu ii) uvedeného nařízení musí splňovat požadavky stanovené v oddílech 5 a 6 přílohy VI tohoto nařízení.

Článek 8

Postupy pro provádění zkoušek

Zkoušky podle čl. 25 odst. 3 písm. a) a čl. 25 odst. 3 písm. f) bodu iv) nařízení (EU) 2016/1628 se provádí v souladu s postupy stanovenými v oddíle 7 přílohy VI a v příloze VIII tohoto nařízení.

Článek 9

Postupy pro měření emisí a odběr vzorků

Měření emisí a odběr vzorků podle čl. 25 odst. 3 písm. b) nařízení (EU) 2016/1628 se provádí v souladu s postupy stanovenými v oddíle 8 přílohy VI tohoto nařízení a v dodatku 1 k uvedené příloze.

Článek 10

Přístroje pro provádění zkoušek a pro měření emisí a odběr vzorků

Přístroje pro provádění zkoušek podle čl. 25 odst. 3 písm. a) nařízení (EU) 2016/1628 a pro měření emisí a odběr vzorků podle čl. 25 odst. 3 písm. b) uvedeného nařízení musí splňovat technické požadavky a vlastnosti stanovené v oddílu 9 přílohy VI tohoto nařízení.

Článek 11

Metoda pro vyhodnocení a výpočty údajů

Údaje podle čl. 25 odst. 3 písm. c) nařízení (EU) 2016/1628 se hodnotí a vypočítávají v souladu s metodou stanovenou v příloze VII tohoto nařízení.

Článek 12

Technické vlastnosti referenčních paliv

Referenční paliva podle čl. 25 odst. 2 nařízení (EU) 2016/1628 musí splňovat technické vlastnosti stanovené v příloze IX tohoto nařízení.

Článek 13

Podrobné technické specifikace a podmínky pro dodávání motoru bez systému následného zpracování výfukových plynů

Pokud výrobce dodá motor výrobci původního zařízení v Unii odděleně od jeho systému následného zpracování výfukových plynů, jak stanoví čl. 34 odst. 3 nařízení Evropského parlamentu a Rady (EU) 2016/1628, musí uvedené dodání splňovat podrobné technické specifikace a podmínky stanovené v příloze X tohoto nařízení.

Článek 14

Podrobné technické specifikace a podmínky pro dočasné uvádění na trh za účelem provádění provozních zkoušek

Motory, které nezískaly EU schválení typu v souladu s nařízením Evropského parlamentu a Rady (EU) 2016/1628, se v souladu s čl. 34 odst. 4 uvedeného nařízení mohou dočasně uvádět na trh za účelem provádění provozních zkoušek, pokud splňují podrobné technické specifikace a podmínky stanovené v příloze XI tohoto nařízení.

Článek 15

Podrobné technické specifikace a podmínky pro motory pro zvláštní účely

EU schválení typu motory pro zvláštní účely a povolení pro uvedení těchto motorů na trh se udělí v souladu čl. 34 odst. 5 a 6 nařízení (EU) 2016/1628, pokud jsou splněny podrobné technické požadavky a podmínky stanovené v příloze XII tohoto nařízení.

Článek 16

Přijímání rovnocenných schválení typu motorů

Předpisy EHK OSN nebo jejich změny podle čl. 42 odst. 4 písm. a) nařízení (EU) 2016/1628 a akty Unie podle čl. 42 odst. 4 písm. b) uvedeného nařízení jsou uvedeny v příloze XIII tohoto nařízení.

Článek 17

Podrobné údaje o příslušných informacích a pokynech pro výrobce původního zařízení

Podrobné údaje o informacích a pokynech pro výrobce původního zařízení podle čl. 43 odst. 2, 3 a 4 nařízení (EU) 2016/1628 jsou uvedeny v příloze XIV tohoto nařízení.

Článek 18

Podrobné údaje o příslušných informacích a pokynech pro konečné uživatele

Podrobné údaje o informacích a pokynech pro konečné uživatele podle čl. 43 odst. 3 a 4 nařízení (EU) 2016/1628 jsou uvedeny v příloze XV tohoto nařízení.

Článek 19

Výkonnostní normy a posuzování technických zkušeben

1.   Technické zkušebny musí splňovat výkonnostní normy stanovené v příloze XVI.

2.   Schvalovací orgány posuzují technické zkušebny v souladu s postupem stanoveným v příloze XVI tohoto nařízení.

Článek 20

Vlastnosti zkušebních cyklů v ustáleném a neustáleném stavu

Zkušební cykly v ustáleném a neustáleném stavu podle článku 24 nařízení (EU) 2016/1628 musí splňovat vlastnosti stanovené v příloze XVII tohoto nařízení.

Článek 21

Vstup v platnost a použitelnost

Toto nařízení vstupuje v platnost dvacátým dnem po vyhlášení v Úředním věstníku Evropské unie.

Toto nařízení je závazné v celém rozsahu a přímo použitelné ve všech členských státech.

V Bruselu dne 19. prosince 2016.

Za Komisi

předseda

Jean-Claude JUNCKER


(1)  Úř. věst. L 252, 16.9.2016, s. 53.

(2)  Rozhodnutí Rady ze dne 27. listopadu 1997 o přistoupení Evropského společenství k Dohodě Evropské hospodářské komise Organizace spojených národů o přijetí jednotných technických pravidel pro kolová vozidla, zařízení a části, které se mohou montovat nebo užívat na kolových vozidlech, a o podmínkách pro vzájemné uznávání schválení typu udělených na základě těchto pravidel („revidovaná dohoda z roku 1958“) (Úř. věst. L 346, 17.12.1997, s. 78).

(3)  http://www.unece.org/trans/main/wp29/wp29wgs/wp29gen/wp29glob_registry.html

(4)  Úř. věst. L 88, 22.3.2014, s. 1.


PŘÍLOHY

Číslo přílohy

Název přílohy

Strana

I

Požadavky týkající se jiných specifikovaných paliv, směsí paliv nebo emulzí paliv

 

II

Opatření ohledně shodnosti výroby

 

III

Metodika pro úpravu výsledků laboratorních zkoušek emisí, tak aby zohledňovaly faktory zhoršení

 

IV

Požadavky týkající se strategie pro regulaci emisí, opatření k regulaci emisí NOx a opatření k regulaci částic

 

V

Měření a zkoušky týkající se rozsahu spojeného s nesilničním zkušebním cyklem v ustáleném stavu

 

VI

Podmínky, metody, postupy a přístroje pro provádění zkoušek a pro měření emisí a odběr vzorků

 

VII

Metoda vyhodnocování údajů a výpočtů

 

VIII

Požadavky na výkonnost a zkušební postupy pro motory duel fuel

 

IX

Technické vlastnosti referenčních paliv

 

X

Podrobné technické specifikace a podmínky pro dodávání motoru bez systému následného zpracování výfukových plynů

 

XI

Podrobné technické specifikace a podmínky pro dočasné uvádění na trh za účelem provádění provozních zkoušek

 

XII

Podrobné technické specifikace a podmínky pro motory pro zvláštní účely

 

XIII

Uznávání rovnocenných schválení typu motorů

 

XIV

Podrobné údaje o příslušných informacích a pokynech pro výrobce původního zařízení

 

XV

Podrobné údaje o příslušných informacích a pokynech pro konečné uživatele

 

XVI

Výkonnostní normy a posuzování technických zkušeben

 

XVII

Vlastnosti zkušebních cyklů v ustáleném a neustáleném stavu

 


PŘÍLOHA I

Požadavky týkající se jiných specifikovaných paliv, směsí paliv nebo emulzí paliv

1.   Požadavky týkající se motorů na kapalná paliva

1.1.   Při podávání žádosti o EU schválení typu mohou výrobci vybrat jednu z těchto možností, pokud jde o použitelnost paliv motoru:

a)

motor se standardní použitelností paliv podle požadavků stanovených v bodě 1.2 nebo

b)

motor pro konkrétní palivo podle požadavků stanovených v bodě 1.3.

1.2.   Požadavky na motor se standardní použitelností paliv (naftový, benzínový)

Motor se standardní použitelností paliv musí splňovat požadavky uvedené v bodech 1.2.1 až 1.2.4.

1.2.1.   Základní motor musí splňovat příslušné mezní hodnoty emisí stanovené v příloze II nařízení (EU) a 2016/1628 a požadavky stanovené v tomto nařízení, pokud je motor používán s referenčními palivy uvedenými v oddílech 1.1 nebo 2.1 přílohy IX.

1.2.2.   Jelikož norma Evropského výboru pro normalizaci (norma „CEN“) pro plynový olej pro nesilniční stroje ani tabulka vlastností paliv pro plynový olej pro nesilniční stroje ve směrnici Evropského parlamentu a Rady 98/70/ES (1) neexistuje, referenční palivo motorová nafta (plynový olej pro nesilniční stroje) v příloze IX představuje běžně prodávané nesilniční plynové oleje s obsahem síry nejvýše 10 mg/kg, cetanovým číslem nejméně 45 a obsahem methylesteru mastné kyseliny („FAME“) nejvýše 7,0 % obj. Není-li povoleno jinak podle bodů 1.2.2.1, 1.2.3 a 1.2.4, poskytne výrobce konečným uživatelům v souladu s požadavky přílohy XV odpovídající prohlášení, že provoz motoru s využitím plynového oleje pro nesilniční stroje je omezen na paliva s obsahem síry nejvýše 10 mg/kg (20 mg/kg v koncovém článku dodavatelského řetězce), s cetanovým číslem nejméně 45 a obsahem FAME nejvýše 7,0 % obj. Výrobce může volitelně stanovit další parametry (např. ohledně mazivosti).

1.2.2.1.   Výrobce motoru nesmí v okamžiku EU schválení typu uvádět, že určitý typ motoru nebo rodina motorů smí být provozována v Unii s jinými běžně prodávanými palivy, než jsou ta, která splňují požadavky tohoto bodu, pokud výrobce navíc nesplňuje požadavek v bodu 1.2.3:

a)

v případě benzinu směrnice 98/70/ES nebo norma CEN EN 228: 2012. V souladu se specifikací výrobce může být přidán mazací olej;

b)

v případě motorové nafty (jiné než plynový olej pro nesilniční stroje) směrnice Evropského parlamentu a Rady 98/70/ES nebo norma CEN EN 590: 2013;

c)

v případě motorové nafty (jiné než plynový olej pro nesilniční stroje) směrnice 98/70/ES a také cetanové číslo nejméně 45 a také FAME nejvýše 7,0 % obj.

1.2.3.   Pokud výrobce povoluje provoz motorů s dalšími běžně prodávanými palivy, která nejsou uvedena v bodě 1.2.2, jako je provoz na B100 (EN 14214:2012+A1:2014), B20 nebo B30 (EN16709:2015), nebo pro specifikovaná paliva, směsi paliv nebo emulze paliv, musí výrobce kromě požadavků bodu 1.2.2.1 učinit všechny tyto kroky:

a)

prostřednictvím informačního dokumentu stanoveného v prováděcím nařízení Komise (EU) 2017/656 (2) deklarovat specifikaci komerčních paliv, směsí paliv nebo emulzí paliv, s nimž je daná rodina motorů schopna provozu;

b)

prokázat schopnost základního motoru splnit požadavky tohoto nařízení na uvedená paliva, směsi paliv nebo emulze paliv;

c)

splnit požadavky monitorování v provozu stanovené v nařízení Komise v přenesené pravomoci (EU) 2017/655 (3) týkající se deklarovaných paliv, směsí paliv a emulzí paliv, včetně případného mísení deklarovaných paliv, směsí paliv a emulzí paliv a příslušného běžně prodávaného paliva podle bodu 1.2.2.1.

1.2.4.   U zážehových motorů musí být poměrem směsi paliva a oleje poměr doporučený výrobcem. Procentuální podíl oleje ve směsi palivo/mazivo se uvede v informačním dokumentu stanoveném v prováděcím nařízení (EU) 2017/656.

1.3.   Požadavky na motor pro konkrétní palivo (ED 95 nebo E 85)

Motor na konkrétní palivo (ED 95 nebo E 85) musí splňovat požadavky uvedené v bodech 1.3.1 a 1.3.2.

1.3.1.   Pro ED 95 musí základní motor splňovat příslušné mezní hodnoty emisí stanovené v příloze II nařízení (EU) a 2016/1628 a požadavky stanovené v tomto nařízení, pokud je motor používán s referenčními palivy uvedenými v bodě 1.2 přílohy IX.

1.3.2.   Pro E 85 musí základní motor splňovat příslušné mezní hodnoty emisí stanovené v příloze II nařízení (EU) a 2016/1628 a požadavky stanovené v tomto nařízení, pokud je motor používán s referenčními palivy uvedenými v bodě 2.2 přílohy IX.

2.   Požadavky na motory poháněné zemním plynem / biomethanem (NG) nebo zkapalněným ropným plynem (LPG), včetně motorů dual fuel

2.1.   Při podávání žádosti o EU schválení typu mohou výrobci vybrat jednu z těchto možností, pokud jde o použitelnost paliv motoru:

a)

motor s univerzální použitelností paliv podle požadavků stanovených v bodě 2.3;

b)

motor s omezenou použitelností paliv podle požadavků stanovených v bodě 2.4;

c)

motor pro konkrétní palivo podle požadavků stanovených v bodě 2.5.

2.2.   Tabulky shrnující požadavky pro EU schválení motorů na zemní plyn / biomethan, na LPG a motorů dual fuel jsou uvedeny v dodatku 1.

2.3.   Požadavky na motor s univerzální použitelností paliv

2.3.1.   U motorů na zemní plyn / biomethan, včetně motorů dual fuel, je výrobce povinen prokázat schopnost základního motoru přizpůsobit se jakémukoli složení zemního plynu / biomethanu, které může být nabízeno na trhu. Uvedené prokázání se provede v souladu s tímto oddílem 2 a v případě motorů dual fuel rovněž v souladu s dodatečnými ustanoveními týkajícími se postupu přizpůsobení paliva stanovenými v bodě 6.4 přílohy VIII.

2.3.1.1.   U motorů na stlačený zemní plyn / biomethan (CNG) obecně existují dva druhy paliva: palivo s velkou výhřevností (plyn H) a palivo s malou výhřevností (plyn L), avšak s velkým rozptylem v obou skupinách; liší se výrazně svým obsahem energie vyjádřeným Wobbeho indexem a svým faktorem posunu λ (Sλ). Zemní plyny s faktorem posunu λ mezi 0,89 a 1,08 (0,89 ≤ Sλ ≤ 1,08) se považují za paliva s velkou výhřevností (skupina H), zatímco zemní plyny s faktorem posunu λ mezi 1,08 a 1,19 (1,08 ≤ Sλ ≤ 1,19) se považují za paliva s malou výhřevností (skupina L). Složení referenčních paliv odráží extrémní proměnlivost Sλ.

Základní motor musí splňovat požadavky tohoto nařízení na referenční paliva GR (palivo 1) a G25 (palivo 2) uvedené v příloze IX nebo na rovnocenná paliva vytvořená použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX, aniž by se provedlo jakékoli nové ruční nastavení palivového systému motoru mezi oběma zkouškami (je vyžadována samočinná adaptace). Po změně paliva je přípustný jeden přizpůsobovací běh. Přizpůsobovací průběh zahrnuje provedení stabilizace pro následující zkoušku emisí podle odpovídajícího zkušebního cyklu. V případě motorů zkoušených pomocí nesilničních zkušebních cyklů v ustáleném stavu („NRSC“), kde stabilizační cyklus nepostačuje k tomu, aby se přívod paliva do motoru přizpůsobil automaticky, smí být před stabilizací motoru proveden alternativní přizpůsobovací průběh stanovený výrobcem.

2.3.1.1.1   Výrobce smí zkoušet motor s třetím palivem (palivo 3), jestliže se faktor posunu λ (Sλ) pohybuje mezi 0,89 (tj. nižší rozsah paliva GR)) a 1,19 (tj. vyšší rozsah paliva G25), například tehdy, je-li palivo 3 běžně prodávaným palivem. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.

2.3.1.2.   V případě motorů na zkapalněný zemní plyn / zkapalněný biomethan (LNG) splňuje základní motor požadavky tohoto nařízení na referenční paliva GR (palivo 1) a G20 (palivo 2) uvedené v příloze IX nebo na rovnocenná paliva vytvořená použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX, aniž by se provedlo jakékoli nové ruční nastavení systému přívodu paliva do motoru mezi oběma zkouškami (je vyžadována samočinná adaptace). Po změně paliva je přípustný jeden přizpůsobovací běh. Přizpůsobovací průběh zahrnuje provedení stabilizace pro následující zkoušku emisí podle odpovídajícího zkušebního cyklu. V případě motorů zkoušených na NRSC, kde stabilizační cyklus nepostačuje k tomu, aby se přívod paliva do motoru automaticky přizpůsobil, smí být před stabilizací motoru proveden alternativní přizpůsobovací průběh stanovený výrobcem.

2.3.2.   V případě motorů na stlačený zemní plyn / biomethan (CNG), které se mohou samočinně přizpůsobit jednak pro skupinu plynů H a jednak pro skupinu plynů L a u něhož se mezi skupinou H a skupinou L přepíná přepínačem, se musí základní motor zkoušet s odpovídajícím referenčním palivem uvedeným v příloze IX pro každou skupinu při každé poloze přepínače. Tato paliva jsou GR (palivo 1) a G23 (palivo 3) pro skupinu plynů H a G25 (palivo 2) a G23 (palivo 3) pro skupinu plynů L nebo rovnocenná paliva vytvořená použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX. Základní motor musí splňovat požadavky tohoto nařízení v obou polohách přepínače bez jakéhokoli nového nastavení přívodu paliva mezi oběma zkouškami provedenými při jedné a druhé poloze přepínače. Po změně paliva je přípustný jeden přizpůsobovací běh. Přizpůsobovací průběh zahrnuje provedení stabilizace pro následující zkoušku emisí podle odpovídajícího zkušebního cyklu. V případě motorů zkoušených na NRSC, kde stabilizační cyklus nepostačuje k tomu, aby se přívod paliva do motoru automaticky přizpůsobil, smí být před stabilizací motoru proveden alternativní přizpůsobovací průběh stanovený výrobcem.

2.3.2.1.   Výrobce smí zkoušet motor s třetím palivem místo G23 (palivo 3), jestliže se faktor posunu λ (Sλ) pohybuje mezi 0,89 (tj. nižší rozsah paliva GR)) a 1,19 (tj. vyšší rozsah paliva G25), například tehdy, je-li palivo 3 běžně prodávaným palivem. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.

2.3.3.   U motorů na zemní plyn / biomethan se určí poměr výsledků měření emisí „r“ pro každou znečišťující látku takto:

Formula

nebo

Formula

a

Formula

2.3.4.   U motorů na LPG je výrobce povinen prokázat schopnost základního motoru přizpůsobit se jakémukoli složení paliva, které může být nabízeno na trhu.

U motorů na LPG složení C3/C4 kolísá. Tato kolísání se odrážejí v referenčních palivech. Základní motor musí splňovat požadavky na emise s referenčními palivy A a B uvedenými v příloze IX, aniž by se provedlo jakékoli nové nastavení přívodu paliva mezi oběma zkouškami. Po změně paliva je přípustný jeden přizpůsobovací běh. Přizpůsobovací průběh zahrnuje provedení stabilizace pro následující zkoušku emisí podle odpovídajícího zkušebního cyklu. V případě motorů zkoušených na NRSC, kde stabilizační cyklus nepostačuje k tomu, aby se přívod paliva do motoru automaticky přizpůsobil, smí být před stabilizací motoru proveden alternativní přizpůsobovací průběh stanovený výrobcem.

2.3.4.1.   Poměr výsledků měření emisí „r“ se určí pro každou znečišťující látku takto:

Formula

2.4.   Požadavky na motor s omezenou použitelností paliv

Motor s omezenou použitelností paliv musí splňovat požadavky uvedené v bodech 2.4.1 až 2.4.3.

2.4.1.   U motorů na stlačený zemní plyn konstruovaných pro provoz buď se skupinou plynů H, nebo se skupinou plynů L

2.4.1.1.   Základní motor se zkouší s odpovídajícím referenčním palivem uvedeným v příloze IX pro danou skupinu. Tato paliva jsou GR (palivo 1) a G23 (palivo 3) pro skupinu plynů H a G25 (palivo 2) a G23 (palivo 3) pro skupinu plynů L nebo rovnocenná paliva vytvořená použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX. Základní motor musí splňovat požadavky tohoto nařízení bez jakéhokoli nového nastavení přívodu paliva mezi oběma zkouškami. Po změně paliva je přípustný jeden přizpůsobovací běh. Přizpůsobovací průběh zahrnuje provedení stabilizace pro následující zkoušku emisí podle odpovídajícího zkušebního cyklu. V případě motorů zkoušených na NRSC, kde stabilizační cyklus nepostačuje k tomu, aby se přívod paliva do motoru automaticky přizpůsobil, smí být před stabilizací motoru proveden alternativní přizpůsobovací průběh stanovený výrobcem.

2.4.1.2.   Výrobce smí zkoušet motor s třetím palivem místo G23 (palivo 3), jestliže se faktor posunu λ (Sλ) pohybuje mezi 0,89 (tj. nižší rozsah paliva GR)) a 1,19 (tj. vyšší rozsah paliva G25), například tehdy, je-li palivo 3 běžně prodávaným palivem. Výsledky této zkoušky se mohou použít jako základ pro hodnocení shodnosti výroby.

2.4.1.3.   Poměr výsledků měření emisí „r“ se určí pro každou znečišťující látku takto:

Formula

nebo

Formula

a

Formula

2.4.1.4.   Při dodání zákazníkovi musí být na motoru štítek podle požadavků přílohy III nařízení (EU) 2016/1628 udávající, pro kterou skupinu plynů má motor EU schválení typu.

2.4.2.   U motorů na zemní plyn nebo LPG konstruovaných pro provoz s jedním specifickým složením paliva.

2.4.2.1.   Základní motor musí splňovat požadavky na emise s referenčními palivy GR a G25 nebo s rovnocennými palivy vytvořenými použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX, v případě stlačeného zemního plynu, s referenčními palivy GR a G20 nebo s rovnocennými palivy vytvořenými použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 2 k příloze VI, v případě zkapalněného zemního plynu, nebo s referenčními palivy A a B v případě zkapalněného ropného plynu, jak je uvedeno v příloze IX. Mezi zkouškami je přípustné jemné seřízení palivového systému. Toto jemné seřízení se skládá z překalibrování databáze palivového systému, aniž by přitom došlo ke změně základní strategie pro regulaci nebo základní struktury databáze. V případě potřeby se připouští výměna částí, které mají přímý vztah k průtočnému množství paliva, jako jsou vstřikovací trysky.

2.4.2.2.   U motorů na stlačený zemní plyn smí výrobce vyzkoušet motor s referenčními palivy GR a G23 nebo s referenčními palivy G25 a G23 nebo s rovnocennými palivy vytvořenými použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX, v kterémžto případě EU schválení typu platí pouze pro skupinu plynů H, nebo pro skupinu plynů L.

2.4.2.3.   Při dodání zákazníkovi musí být na motoru štítek podle přílohy III prováděcího nařízení (EU) 2017/656 udávající, pro jakou skupinu složení paliva je motor kalibrován.

2.5.   Požadavky na motor na konkrétní palivo využívající zkapalněný zemní plyn / zkapalněný biomethan (LNG)

Motor na konkrétní palivo využívající zkapalněný zemní plyn / zkapalněný biomethan musí splňovat požadavky uvedené v bodech 2.5.1 až 2.5.2.

2.5.1.   Motor na konkrétní palivo využívající zkapalněný zemní plyn / zkapalněný biomethan (LNG)

2.5.1.1.   Motor musí být kalibrován pro konkrétní složení zkapalněného zemního plynu vedoucí k faktoru posunu λ, který se neliší o více než 3 % od faktoru posunu λ paliva G20 uvedeného v příloze IX, a s obsahem ethanu nepřesahujícím 1,5 %.

2.5.1.2.   Nejsou-li požadavky stanovené v bodě 2.5.1.1 splněny, požádá výrobce o schválení typu pro motor s univerzální použitelností paliv podle specifikací uvedených v bodě 2.1.3.2.

2.5.2.   Motor na konkrétní palivo využívající zkapalněný zemní plyn (LNG)

2.5.2.1.   U rodiny motorů dual fuel musí být motory kalibrovány pro specifické složení plynu LNG vedoucí k faktoru posunu λ, který se neliší o více než 3 % od faktoru posunu λ paliva G20 uvedeného v příloze IX, a s obsahem ethanu nepřesahujícím 1,5 %, přičemž základní motor se zkouší pouze s referenčním plynným palivem G20 nebo s rovnocenným palivem vytvořeným použitím příměsí plynu z plynovodu s jinými plyny, jak je uvedeno v dodatku 1 k příloze IX.

2.6.   EU schválení typu člena rodiny

2.6.1.   S výjimkou případu uvedeného v bodu 2.6.2 se EU schválení typu základního motoru rozšíří bez dalšího zkoušení na všechny členy rodiny motorů pro všechna složení paliva ve skupině, pro kterou základní motor získal EU schválení typu (v případě motorů popsaných v bodu 2.5), nebo pro tutéž skupinu paliv (v případě motorů popsaných buď v bodu 2.3, nebo v bodu 2.4), pro kterou základní motor získal EU schválení typu.

2.6.2.   Pokud technická zkušebna zjistí, že z hlediska vybraného základního motoru předložená žádost ne zcela reprezentuje rodinu motorů definovanou v příloze IX prováděcího nařízení (EU) 2017/656, může technická zkušebna vybrat a vyzkoušet alternativní referenční zkušební motor, případně další referenční zkušební motor.

2.7.   Dodatečné požadavky na motory dual fuel

Za účelem získání EU schválení typu motoru nebo rodiny motorů dual fuel výrobce:

a)

provede zkoušky podle tabulky 1.3 dodatku 1;

b)

kromě splnění požadavků stanovených v oddílu 2 prokáže, že motory dual fuel byly podrobeny zkouškám a splňují požadavky stanovené v příloze VIII.


(1)  Směrnice Evropského parlamentu a Rady 98/70/ES ze dne 13. října 1998 o jakosti benzinu a motorové nafty a o změně směrnice Rady 93/12/EHS (Úř. věst. L 350, 28.12.1998, s. 58).

(2)  Prováděcí nařízení Komise (EU) 2017/656 ze dne 19. prosince 2016, kterým se stanoví správní požadavky týkající se mezních hodnot emisí a schvalování typu spalovacích motorů v nesilničních mobilních strojích v souladu s nařízením Evropského parlamentu a Rady (EU) 2016/1628 (viz strana 364 v tomto čísle Úředního věstníku).

(3)  Nařízení Komise v přenesené pravomoci (EU) 2017/655 ze dne 19. prosince 2016,kterým se doplňuje nařízení Evropského parlamentu a Rady (EU) 2016/1628, pokud jde o monitorování emisí plynných znečišťujících látek ze spalovacích motorů v provozu instalovaných v nesilničních mobilních strojích (viz strana 334 v tomto čísle Úředního věstníku).

Dodatek 1

Shrnutí postupu schvalování u motorů na zemní plyn a na LPG včetně motorů dual fuel

Tabulky 1.1 až 1.3 obsahují shrnutí postupu schvalování u motorů na zemní plyn a na LPG a minimálního počtu zkoušek potřebných ke schválení motorů dual fuel.

Tabulka 1.1

EU schválení typu motorů na zemní plyn

 

Bod 2.3: Požadavky na motor s univerzální použitelností paliv

Počet zkoušek

Výpočet „r“

Bod 2.4: Požadavky na motor s omezenou použitelností paliv

Počet zkoušek

Výpočet „r“

Viz bod 2.3.1.

motor na NG, který lze přizpůsobit jakémukoli složení paliva

GR (1) a G25 (2)

Na žádost výrobce se motor může zkoušet s dalším běžně prodávaným palivem (3),

jestliže Sl = 0,89 – 1,19

2

(max. 3)

Formula

a je-li zkouška s dalším palivem;

Formula

a

Formula

 

 

 

Viz bod 2.3.2.

motor na NG, který se může samočinně přizpůsobit pomocí přepínače

GR (1) a G23 (3) pro H a

G25 (2) a G23 (3) pro L

Na žádost výrobce se motor může zkoušet s běžně prodávaným palivem (3) místo G23,

jestliže Sl = 0,89 – 1,19

2 pro skupinu H a

2 pro skupinu L

v příslušné poloze vypínače

Formula

a

Formula

 

 

 

viz bod 2.4.1.

motor na NG použitelný buď pro plyny skupiny H, nebo pro plyny skupiny L

 

 

 

GR (1) a G23 (3) pro H nebo

G25 (2) a G23 (3) pro L

Na žádost výrobce se motor může zkoušet s běžně prodávaným palivem (3) místo G23,

jestliže Sl = 0,89 – 1,19

2 pro skupinu H

nebo

2 pro skupinu L

2

Formula

pro skupinu H

nebo

Formula

pro skupinu L

Viz bod 2.4.2.

motor na NG použitelný pro jedno specifické složení paliva

 

 

 

GR (1) a G25 (2),

jemné seřízení mezi zkouškami povoleno.

Na žádost výrobce se motor může zkoušet s palivem:

 

GR (1) a G23 (3) pro H nebo

 

G25 (2) a G23 (3) pro L

2

2 pro skupinu H

nebo

2 pro skupinu L

 


Tabulka 1.2

EU schválení typu motorů na LPG

 

Bod 2.3: Požadavky na motor s univerzální použitelností paliv

Počet zkoušek

Výpočet „r“

Bod 2.4: Požadavky na motor s omezenou použitelností paliv

Počet zkoušek

Výpočet „r“

Viz bod 2.3.4.

motor na LPG použitelný pro jakékoli složení paliva

Palivo A a palivo B

2

Formula

 

 

 

Viz bod 2.4.2.

motor na LPG použitelný pro jedno specifické složení paliva

 

 

 

Palivo A a palivo B, jemné seřízení mezi zkouškami povoleno

2

 


Tabulka 1.3

Minimální počet zkoušek požadovaných pro EU schválení typu motorů dual fuel

Typ dual fuel

Režim kapalného paliva

Režim dual fuel

CNG

LNG

LNG20

LPG

1A

 

Univerzální nebo omezené

(2 zkoušky)

Univerzální

(2 zkoušky)

Pro konkrétní palivo

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

1B

Univerzální

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

Univerzální

(2 zkoušky)

Pro konkrétní palivo

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

2A

 

Univerzální nebo omezené

(2 zkoušky)

Univerzální

(2 zkoušky)

Pro konkrétní palivo

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

2 B

Univerzální

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

Univerzální

(2 zkoušky)

Pro konkrétní palivo

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

3 B

Univerzální

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)

Univerzální

(2 zkoušky)

Pro konkrétní palivo

(1 zkouška)

Univerzální nebo omezené

(2 zkoušky)


PŘÍLOHA II

Opatření ohledně shodnosti výroby

1.   Definice

Pro účely této přílohy se použijí tyto definice:

1.1.

„systémem řízení jakosti“ se rozumí soubor vzájemně propojených a vzájemně se ovlivňujících prvků, které organizace používají k řízení a kontrole toho, jak jsou uskutečňovány politiky jakosti a dosahovány cíle jakosti;

1.2.

„auditem“ se rozumí postup shromažďování důkazů k hodnocení toho, nakolik jsou kritéria auditu uplatňována; měl by být objektivní, nestranný a nezávislý a auditní postup by měl být systematický a řádně zdokumentovaný;

1.3.

„nápravnými opatřeními“ se rozumí postup řešení problému s návaznými kroky, kterými dojde k odstranění příčin neshody nebo nežádoucí situace a které mají zabránit jejich opakování.

2.   Účel

2.1.   Cílem opatření pro shodnost výroby je zajistit, aby byl každý motor ve shodě se specifikací, požadavky na výkon a na označení schváleného typu motoru nebo rodiny motorů.

2.2.   Nedílnou součástí těchto postupů je posouzení systémů řízení jakosti (dále jen „úvodní posouzení“) stanovené v bodě 3 a ověření a kontroly týkající se výroby (dále jen „opatření pro shodnost výrobků“) stanovené v bodě 4.

3.   Úvodní posouzení

3.1.   Před udělením EU schválení typu schvalovací orgán ověří existenci uspokojivých opatření a postupů zavedených výrobcem za účelem zajištění účinné kontroly, aby vyráběné motory odpovídaly schválenému typu motoru nebo rodině motorů.

3.2.   Na úvodní posouzení se použijí směrnice pro auditování systémů managementu jakosti a/nebo systémů environmentálního managementu stanovené v normě EN ISO 19011:2011.

3.3.   Schvalovací orgán vyjádří spokojenost s úvodním posouzením a s opatřeními pro shodnost výrobku podle oddílu 4, přičemž v případě potřeby vezme v úvahu jedno z opatření popsaných v bodech 3.3.1 až 3.3.3 nebo případně úplnou nebo částečnou kombinaci uvedených opatření.

3.3.1.   Úvodní posouzení a/nebo ověření opatření pro shodnost výroby provádí schvalovací orgán udělující schválení nebo určený orgán z pověření schvalovacího orgánu.

3.3.1.1.   Při zvažování rozsahu úvodního posouzení může schvalovací orgán vzít v úvahu dostupné informace o certifikaci výrobce, které nebyly uznány podle bodu 3.3.3.

3.3.2.   Úvodní posouzení a ověření opatření pro shodnost výroby může také provádět schvalovací orgán jiného členského státu nebo určený orgán pověřený k tomuto účelu schvalovacím orgánem.

3.3.2.1.   V takovém případě schvalovací orgán jiného členského státu vypracuje prohlášení o shodě, ve kterém označí oblasti a výrobní zařízení, které zahrnul jako týkající se motorů, jejichž typ má obdržet EU schválení typu.

3.3.2.2.   Po přijetí žádosti o prohlášení o shodě od schvalovacího orgánu členského státu udělujícího EU schválení typu schvalovací orgán jiného členského státu prohlášení o shodě neprodleně zašle, nebo sdělí, že není schopen takové prohlášení poskytnout.

3.3.2.3.   Prohlášení o shodě musí obsahovat alespoň tyto údaje:

3.3.2.3.1

skupina nebo společnost (např. XYZ manufacturing);

3.3.2.3.2.

konkrétní útvar (např. evropská divize);

3.3.2.3.3

závody/provozy (např. motorárna 1 (Spojené království) – motorárna 2 (Německo));

3.3.2.3.4

zahrnuté typy motorů / rodiny motorů

3.3.2.3.5

posuzované oblasti (např. montáž motorů, zkoušení motorů, výroba systémů následného zpracování)

3.3.2.3.6

zkoumané dokumenty (např. příručka jakosti a postupy společnosti a příslušného provozu);

3.3.2.3.7

datum posouzení (např. audit proběhl od 18. do 30. května 2013);

3.3.2.3.8

plánovaná kontrolní návštěva (např. říjen 2014).

3.3.3.   Schvalovací orgán rovněž uzná vhodný certifikát výrobce o dodržení harmonizované normy EN ISO 9001:2008 nebo rovnocenné harmonizované normy jako vyhovující požadavkům úvodního posouzení podle bodu 3.3. Výrobce poskytne podrobné informace o certifikaci a zajistí, aby byl schvalovací orgán informován o každé změně platnosti nebo rozsahu certifikace.

4.   Opatření pro shodnost výrobku

4.1.   Každý motor, který získal EU schválení typu podle nařízení (EU) 2016/1628, tohoto nařízení v přenesené pravomoci, nařízení v přenesené pravomoci (EU) 2017/655 a prováděcího nařízení (EU) 2017/656, musí být vyroben tak, aby se v důsledku splnění požadavků této přílohy, nařízení (EU) 2016/1628 a výše uvedených nařízení v přenesené pravomoci a prováděcích nařízení shodoval se schváleným typem motoru nebo rodiny motorů.

4.2.   Před udělením schválení typu podle nařízení (EU) 2016/1628, aktů v přenesené pravomoci a prováděcího aktu přijatých podle uvedeného nařízení ověří schvalovací orgán existenci odpovídajících opatření a dokumentovaných kontrolních plánů, které budou dohodnuty s výrobcem pro každé schválení, za účelem pravidelného provádění těchto zkoušek nebo souvisejících kontrol k ověření pokračující shody se schváleným typem motoru nebo rodiny motorů, případně včetně zkoušek uvedených v nařízení (EU) 2016/1628 a aktech v přenesené pravomoci a prováděcích aktech přijatých podle uvedeného nařízení.

4.3.   Držitel EU schválení typu musí:

4.3.1.

zajistit existenci a používání postupů účinné kontroly shodnosti motorů se schváleným typem motoru nebo rodinou motorů;

4.3.2.

mít přístup ke zkušebnímu nebo jinému vhodnému vybavení nezbytnému pro ověřování shodnosti s každým schváleným typem motoru nebo rodiny motorů;

4.3.3.

zajistit, aby byly výsledky zkoušek nebo kontrol zaznamenávány a aby připojené dokumenty byly dostupné po dobu až deseti let, která se stanoví dohodou se schvalovacím orgánem;

4.3.4.

u kategorií motorů NRSh a NRS, kromě NRS-v-2b a NRS-v-3 pro každý typ motoru zajistit alespoň provedení kontrol a zkoušek předepsaných v nařízení (EU) 2016/1628 a aktech v přenesené pravomoci a prováděcím aktu přijatých podle uvedeného nařízení. U ostatních kategorií se na zkouškách na úrovni součástí nebo sestavy součástí s vhodným kritériem může dohodnout výrobce se schvalovacím orgánem.

4.3.5.

analyzovat výsledky každého druhu zkoušky nebo kontroly tak, aby byla ověřena a zajištěna stabilita vlastností výrobku s připuštěním odchylek v průmyslové výrobě;

4.3.6.

zajistit, aby v případě, že jakýkoli soubor vzorků nebo zkušebních dílů vykáže neshodnost při daném druhu zkoušky, následoval další odběr vzorků a nová zkouška nebo kontrola.

4.4.   Pokud schvalovací orgán nepovažuje výsledky dalších auditů nebo kontroly podle bodu 4.3.6 za uspokojivé, zajistí výrobce co nejdříve prostřednictvím nápravných opatření ke spokojenosti schvalovacího orgánu obnovení shodnosti výroby.

5.   Opatření pro průběžná ověřování

5.1.   Orgán, který udělil EU schválení typu, může kdykoliv prostřednictvím pravidelných auditů ověřovat postupy kontroly shodnosti výroby používané v každém výrobním provozu. Výrobce za tímto účelem umožní přístup do svých výrobních, inspekčních, zkušebních, skladovacích a distribučních zařízení a poskytne veškeré nezbytné informace z dokumentace a záznamů systému řízení jakosti.

5.1.1.   Běžným přístupem k takovým pravidelným auditům je monitorovat trvalou účinnost postupů stanovených v oddílech 3 a 4 (úvodní posouzení a opatření pro shodnost výroby).

5.1.1.1.   Dohled vykonávaný technickou zkušebnou (kvalifikovanou nebo uznanou podle bodu 3.3.3) se uzná jako vyhovující požadavkům bodu 5.1.1 z hlediska postupů stanovených při úvodním posouzení.

5.1.1.2.   Minimální četnost ověřování (jiných než podle bodu 5.1.1.1) k zajištění přezkumu příslušných kontrol shodnosti výroby prováděných podle bodů 3 a 4 se přezkoumává v časových intervalech odpovídajících stupni důvěry stanovených schvalovacím orgánem a je nejméně jednou za dva roky. Další ověřování však provádí schvalovací orgán v závislosti na ročním objemu výroby, výsledcích předchozích hodnocení, potřebě monitorovat nápravná opatření a na základě odůvodněné žádosti jiného schvalovacího orgánu nebo jakéhokoli orgánu dozoru nad trhem.

5.2.   Při každém přezkumu jsou inspektorovi k dispozici záznamy o zkouškách a kontrolách a výrobní záznamy, a zejména záznamy o zkouškách nebo kontrolách dokumentovaných podle požadavků bodu 4.2.

5.3.   Inspektor může namátkově vybrat vzorky, které se přezkoušejí v laboratoři výrobce, nebo v zařízeních technické zkušebny, v kterémžto případě se provedou pouze fyzické zkoušky. Minimální počet vzorků může být určen podle výsledků vlastních kontrol výrobce.

5.4.   Pokud se úroveň kontroly jeví jako neuspokojivá nebo pokud se zdá nutné ověřit platnost zkoušek provedených podle bodu 5.2 nebo na základě odůvodněné žádosti jiného schvalovacího orgánu nebo orgánu dozoru nad trhem, vybere inspektor namátkově vzorky, které se přezkoušejí v laboratoři výrobce nebo odešlou technické zkušebně k provedení fyzických zkoušek podle požadavků uvedených v oddílu 6 nařízení (EU) 2016/1628 a v aktech v přenesené pravomoci a prováděcím aktu přijatých podle uvedeného nařízení.

5.5.   Pokud schvalovací orgán v průběhu inspekce nebo kontrolního přezkumu nebo schvalovací orgán v jiném členském státě v souladu s čl. 39 odst. 3 nařízení (EU) 2016/1628 zjistí neuspokojivé výsledky, schvalovací orgán zajistí, aby byla co nejdříve přijata veškerá opatření nezbytná pro obnovení shodnosti výroby.

6.   Požadavky na zkoušky shodnosti výroby v případech neuspokojivé úrovně kontroly shodnosti výrobku podle bodu 5.4

6.1.   V případě neuspokojivé úrovně kontroly shodnosti výrobku podle bodu 5.4 nebo 5.5 se shodnost výroby zkontroluje zkouškou emisí na základě popisu v certifikátech EU schválení typu uvedených v příloze IV prováděcího nařízení (EU) 2017/656.

6.2.   Nestanoví-li bod 6.3 jinak, použije se tento postup:

6.2.1.   Ze sériové výroby posuzovaného typu motoru se ke kontrole namátkově vyberou tři motory a případně tři systémy následného zpracování. Je-li to nutné k dosažení kritéria vyhovění nebo nevyhovění, vyberou se další motory. K dosažení kritéria vyhovění je zapotřebí vyzkoušet nejméně čtyři motory.

6.2.2.   Poté, co inspektor vybere motory, nesmí výrobce na vybraných motorech provádět žádná seřízení.

6.2.3.   Motory se podrobí zkouškám emisí podle požadavků přílohy VI, nebo v případě motorů dual fuel podle dodatku 2 k příloze VIII, a zkušebním cyklům pro daný typ motoru podle přílohy XVII.

6.2.4.   Jako mezní hodnoty se použijí hodnoty uvedené v příloze II nařízení (ES) 2016/1628. Pokud se motor se systémem následného zpracování regeneruje občas, jak je uvedeno v bodě 6.6.2 přílohy VI, každý výsledek emisí plynných nebo pevných znečišťujících látek se upraví pomocí faktoru použitelného pro daný typ motoru. Ve všech případech se každý výsledek zkoušky emisí plynných nebo pevných znečišťujících látek upraví pomocí příslušných faktorů zhoršení pro uvedený typ motoru, jak je stanoveno v souladu s přílohou III.

6.2.5.   Zkoušky se provedou s nově vyrobenými motory.

6.2.5.1.   Na žádost výrobce se však mohou zkoušky provést s motory, které byly v záběhu, po dobu buď odpovídající 2 % doby životnosti emisních vlastností, nebo, pokud je tato doba kratší, 125 hodin. Pokud záběh provádí výrobce, musí se výrobce zavázat, že nebude uvedené motory nijak seřizovat. Pokud výrobce stanovil postup záběhu v bodě 3.3 informačního dokumentu, jak stanoví příloha I prováděcího nařízení (EU) 2017/656, záběh se provede podle uvedeného postupu.

6.2.6.   Na základě zkoušek vybraných motorů podle dodatku 1 se sériová výroba posuzovaných motorů pokládá za shodnou se schváleným typem, pokud podle zkušebních kritérií v příslušném dodatku bylo splněno kritérium vyhovění pro všechny znečisťující látky, a za neshodnou se schváleným typem, pokud bylo splněno kritérium nevyhovění pro jednu znečisťující látku, podle kritérií zkoušky použitých v dodatku 1 a jak je znázorněno na obrázku 2.1.

6.2.7.   Jestliže bylo dosaženo kritéria vyhovění u jedné znečišťující látky, nelze toto rozhodnutí změnit na základě výsledku jakýchkoli doplňkových zkoušek určených k dosažení určitého kritéria pro ostatní znečišťující látky.

Jestliže nebylo dosaženo kritéria vyhovění pro všechny znečišťující látky a nebylo dosaženo kritéria nevyhovění pro žádnou znečišťující látku, podrobí se zkoušce jiný motor.

6.2.8.   Výrobce může kdykoli rozhodnout o zastavení zkoušek, jestliže nebylo dosaženo žádného kritéria. V takovém případě se zaznamená kritérium nevyhovění.

6.3.   Odchylně od bodu 6.2.1 se u typů motoru s objemem prodeje v EU méně než 100 kusů ročně použije tento postup:

6.3.1.

Z posuzované sériové výroby typu motoru se ke kontrole namátkově vybere jeden motor a případně jeden systém následného zpracování.

6.3.2.

Pokud motor splňuje požadavky uvedené v bodě 6.2.4, bylo dosaženo kritéria vyhovění a další zkoušky nejsou zapotřebí.

6.3.3.

Pokud při zkoušce nejsou uspokojeny požadavky uvedené v bodu 6.2.4, provede se postup uvedený v bodech 6.2.6 až 6.2.9.

6.4.   Všechny tyto zkoušky smí být provedeny s příslušnými běžně prodávanými palivy. Na žádost výrobce se však použijí referenční paliva popsaná v příloze IX. To znamená, že se provedou zkoušky popsané v dodatku 1 k příloze I s nejméně dvěma referenčními palivy pro každý motor na plynná paliva, kromě motoru na plynná paliva s EU schválením typu pro konkrétní palivo, u něhož je vyžadováno pouze jedno referenční palivo. Pokud se použije více plynných referenčních paliv, musí výsledky prokázat, že motor splňuje mezní hodnoty s každým palivem.

6.5.   Nevyhovění motorů na plynná paliva

V případě sporu ohledně nevyhovění motorů na plynná paliva, včetně motorů dual fuel, při použití běžně prodávaného paliva se musí zkoušky provést s každým referenčním palivem, se kterým byl zkoušen základní motor, a na žádost výrobce popřípadě s dalším třetím palivem podle bodů 2.3.1.1.1, 2.3.2.1 a 2.4.1.2 přílohy I, s kterým byla případně provedena zkouška základního motoru. Výsledky se pak musí přepočítat s použitím příslušných faktorů „r“, „r a“ nebo „r b“, jak je popsáno v bodech 2.3.3, 2.3.4.1 a 2.4.1.3 přílohy I. Jestliže r, r a nebo r b jsou menší než 1, korekce se neprovádí. Naměřené výsledky a případně vypočtené výsledky musí prokázat, že motor splňuje mezní hodnoty se všemi odpovídajícími palivy (například palivy 1, 2 a případně třetím palivem u motorů na zemní plyn / biomethan a palivy A a B u motorů na LPG).

Obrázek 2.1

Schéma zkoušek shodnosti výroby

Image

Dodatek 1

Postup zkoušek kontroly shodnosti výroby

1.

Tento dodatek popisuje postup, který se použije k ověření shodnosti výroby z hlediska emisí znečišťujících látek.

2.

Postup odběru vzorků při velikosti souboru nejméně tří motorů je stanoven tak, aby pravděpodobnost, že soubor při zkoušce vyhoví i při 30 % vadných motorů, byla rovna 0,90 (riziko výrobce = 10 %), zatímco pravděpodobnost, že soubor bude přijat i při 65 % vadných motorů, byla rovna 0,10 (riziko spotřebitele = 10 %).

3.

Pro každou z emisí znečišťujících látek podle tohoto nařízení se použije následující postup (viz obrázek 2.1):

Nechť

:

n= velikost vzorku.

4.

Pro vzorek se vypočte statistický údaj zkoušek, který kvantifikuje kumulativní počet nevyhovujících zkoušek při n-té zkoušce.

5.

Pak:

a)

je-li statistický údaj zkoušek menší nebo rovný hodnotě kritéria vyhovění uvedeného pro velikost vzorku v tabulce 2.1, bylo dosaženo kritéria vyhovění pro danou znečišťující látku;

b)

je-li statistický údaj zkoušek větší nebo rovný hodnotě kritéria nevyhovění uvedeného pro velikost vzorku v tabulce 2.1, bylo dosaženo kritéria nevyhovění pro danou znečišťující látku;

c)

nastane-li jiný případ, přezkouší se další motor podle bodu 6.2 a postup výpočtu se použije pro vzorek navýšený o jednu jednotku.

V tabulce 2.1 jsou hodnoty kritéria vyhovění a kritéria nevyhovění vypočteny podle mezinárodní normy ISO 8422/1991.

Tabulka 2.1

Statistika zkoušky kontroly shodnosti výroby

Nejmenší velikost vzorku: 3

Nejmenší velikost vzorku pro kritérium vyhovění: 4


Kumulativní počet zkoušených motorů (velikost vzorku)

Hodnota kritéria vyhovění

Hodnota kritéria nevyhovění

3

3

4

0

4

5

0

4

6

1

5

7

1

5

8

2

6

9

2

6

10

3

7

11

3

7

12

4

8

13

4

8

14

5

9

15

5

9

16

6

10

17

6

10

18

7

11

19

8

9


PŘÍLOHA III

Metodika pro úpravu výsledků laboratorních zkoušek emisí, tak aby zohledňovaly faktory zhoršení

1.   Definice

Pro účely této přílohy se použijí tyto definice:

1.1

„Cyklem stárnutí“ se rozumí provoz nesilničního mobilního stroje nebo motoru (otáčky, zatížení, výkon) během doby akumulace provozu.

1.2

„Kritickými součástmi souvisejícími s emisemi“ se rozumí systém následného zpracování výfukových plynů, elektronická řídicí jednotka motoru a s ní související čidla a ovládací prvky a systém recirkulace výfukových plynů (EGR) včetně všech příslušných filtrů, chladičů, regulačních ventilů a potrubí.

1.3

„Kritickou údržbou související s emisemi“ se rozumí údržba prováděná na kritických součástech motoru souvisejících s emisemi.

1.4

„Údržbou související s emisemi“ se rozumí údržba, která podstatně ovlivňuje emise či pravděpodobně ovlivní výkonnost z hlediska emisí nesilničních mobilních strojů nebo motoru za běžných podmínek provozu.

1.5

„Rodinou motorů se stejným systémem následného zpracování“ se rozumí výrobcem stanovená skupina motorů odpovídající definici rodiny motorů, které se však dále seskupují do rodiny rodin motorů používajících stejný systém následného zpracování výfukových plynů.

1.6

„Údržbou nesouvisející s emisemi“ se rozumí údržba, která neovlivňuje podstatným způsobem emise a která nemá trvalý vliv na zhoršení emisních vlastností stroje nebo motoru za běžných podmínek, jakmile je údržba provedena.

1.7

„Programem akumulace doby provozu“ se rozumí cyklus stárnutí a akumulace doby provozu pro určení faktorů zhoršení u rodiny motorů se stejným systémem následného zpracování.

2.   Obecně

2.1   Tato příloha podrobně popisuje postupy pro výběr motorů, které mají být zkoušeny v rámci programu akumulace doby provozu pro účely stanovení faktorů zhoršení pro účely EU schválení typu motorů nebo rodiny motorů a posuzování shodnosti výroby. Faktory zhoršení se použijí na emise změřené podle přílohy VI a vypočtené podle přílohy VII v souladu s postupem stanoveným v bodech 3.2.7 nebo 4.3.

2.2   Zkoušky v rámci programu akumulace provozu nebo zkoušky emisí, jimiž se určuje zhoršení, se nemusí konat za přítomnosti schvalovacího orgánu.

2.3   Tato příloha podrobně popisuje také údržbu související i nesouvisející s emisemi, která by měla být nebo může být prováděna na motorech zařazených do programu akumulace provozu. Tato údržba musí splňovat požadavky na údržbu prováděnou na motorech v provozu a koneční uživatelé nových motorů o ní musejí být informováni.

3.   Kategorie NRE, NRG, IWP, IWA, RLL, RLR, SMB, ATS a podkategorie NRS-v-2b a NRS-v-3 motorů

3.1   Výběr motorů k určení faktorů zhoršení po dobu životnosti emisních vlastností

3.1.1   Pro zkoušky emisí k určení faktorů zhoršení během doby životnosti emisních vlastností se vyberou motory z rodiny motorů definované v oddílu 2 přílohy IX prováděcího nařízení (EU) 2017/656.

3.1.2   Motory z různých rodin motorů lze dále spojovat do rodin na základě typu použitého systému následného zpracování výfukových plynů. K zařazení motorů s různým uspořádáním válců, avšak s obdobnými technickými specifikacemi a instalací pro systém následného zpracování výfukových plynů do rodiny motorů se stejným systémem následného zpracování poskytne výrobce schvalovacímu orgánů údaje, které prokazují, že vlastnosti těchto motorů, pokud jde o snížení emisí, jsou obdobné.

3.1.3   Výrobce motorů vybere jeden motor reprezentující rodinu motorů se stejným systémem následného zpracování určený podle bodu 3.1.2 pro zkoušení v rámci programu akumulace doby provozu podle bodu 3.2.2 a před zahájením zkoušek o něm informuje schvalovací orgán.

3.1.4   Pokud schvalovací orgán rozhodne, že nejhorší úroveň emisí rodiny motorů se stejným systémem následného zpracování by mohl lépe charakterizovat jiný zkušební motor, pak zkušební motor vybere společně schvalovací orgán s výrobcem motorů.

3.2   Určení faktorů zhoršení po dobu životnosti emisních vlastností

3.2.1   Obecně

Faktory zhoršení použitelné na rodinu motorů se stejným systémem následného zpracování se odvodí z vybraných motorů na základě programu akumulace doby provozu, který zahrnuje pravidelné zkoušky plynných emisí a emisí pevných částic po dobu každého zkušebního cyklu použitelného pro kategorii motoru, jak je uvedeno v příloze IV nařízení (EU) 2016/1628. V případě nesilničních zkušebních cyklů pro motory kategorie NRE („NRTC“) se použijí pouze výsledky zkoušky cyklu NRTC se startem za tepla („NRTC se startem za tepla“).

3.2.1.1   Na žádost výrobce může schvalovací orgán povolit použití faktorů zhoršení, které byly stanoveny za použití jiných postupů než těch, které jsou uvedeny v bodech 3.2.2 až 3.2.5. V takovém případě musí výrobce prokázat ke spokojenosti schvalovacího orgánu, že použité alternativní postupy nejsou méně přísné než ty, které jsou stanoveny v bodech 3.2.2 až 3.2.5.

3.2.2   Program akumulace doby provozu

Programy akumulace doby provozu je možno provádět na základě volby výrobce tak, že se buď nesilniční mobilní stroj vybavený zvoleným motorem nechá projít programem akumulace doby provozu realizovaným přímo v běžném provozu stroje, nebo se zvolený motor nechá projít programem akumulace doby provozu realizovaným na dynamometru. Nevyžaduje se, aby výrobce pro akumulaci doby provozu mezi zkušebními body měření emisí použil referenční palivo.

3.2.2.1   Akumulace doby provozu v běžném provozu a na dynamometru

3.2.2.1.1   Výrobce v souladu s osvědčeným technickým úsudkem určí formu a trvání akumulace doby provozu a cyklus stárnutí motorů.

3.2.2.1.2   Výrobce určí zkušební body, v nichž budou pomocí příslušných cyklů měřeny plynné emise a emise pevných částic, takto:

3.2.2.1.2.1

Při provádění programu akumulace doby provozu, který je kratší než doba životnosti emisních vlastností podle bodu 3.2.2.1.7, je minimální počet zkušebních bodů tři, přičemž jeden je na začátku, jeden přibližně uprostřed a jeden na konci programu akumulace doby provozu.

3.2.2.1.2.2

Při dokončení akumulace doby provozu až do konce doby životnosti emisních vlastností je minimální počet zkušebních bodů dva, přičemž jeden je na začátku a jeden na konci akumulace doby provozu.

3.2.2.1.2.3

Výrobce může navíc provést zkoušku s rovnoměrně rozloženými mezilehlými body.

3.2.2.1.3   Hodnoty emisí v počátečním bodě a v konečném bodě doby životnosti emisních vlastností buď vypočtené podle bodu 3.2.5.1, nebo přímo změřené podle bodu 3.2.2.1.2.2 musí splňovat mezní hodnoty, které se na danou rodinu motorů vztahují. Jednotlivé výsledky emisí z mezilehlých zkušebních bodů však mohou tyto mezní hodnoty překročit.

3.2.2.1.4   U kategorií nebo podkategorií motorů, na které se vztahuje NRTC, nebo u kategorií motorů nebo podkategorií NRS, u kterých se použijí nesilniční zkušební cykly v neustáleném stavu pro velké zážehové motory („LSI-NRTC“), smí výrobce požádat schvalovací orgán o souhlas s tím, aby se v každém zkušebním bodě uskutečnil pouze jeden zkušební cyklus (NRTC se startem za tepla, nebo případně LSI-NRTC, nebo NRSC), přičemž druhý zkušební cyklus se uskuteční pouze na začátku a na konci programu akumulace doby provozu.

3.2.2.1.5   V případě kategorií nebo podkategorií motorů, pro které není v příloze IV nařízení (EU) 2016/1628 uveden žádný použitelný nesilniční zkušební cyklus v neustáleném stavu, se v každém zkušebním bodě provede pouze NRSC.

3.2.2.1.6   Programy akumulace doby provozu se mohou pro různé rodiny motorů se stejným systémem následného zpracování lišit.

3.2.2.1.7   Programy akumulace doby provozu mohou být kratší než doba životnosti emisních vlastností, nesmí však být kratší než ekvivalent nejméně jedné čtvrtiny příslušné doby životnosti emisních vlastností uvedené v příloze V nařízení (EU) 2016/1628.

3.2.2.1.8   Je povoleno zrychlené stárnutí formou úpravy programu akumulace doby provozu na základě spotřeby paliva. Úprava vychází z poměru mezi typickou spotřebou paliva v provozu a spotřebou paliva v cyklu stárnutí, spotřeba paliva v cyklu stárnutí však nesmí překročit typickou spotřebu v provozu o více než 30 %.

3.2.2.1.9   V případě souhlasu schvalovacího orgánu může výrobce použít alternativní metody zrychleného stárnutí.

3.2.2.1.10   Program akumulace doby provozu musí být podrobně popsán v žádosti o EU schválení typu a oznámen schvalovacímu orgánu ještě před zahájením zkoušek.

3.2.2.2   Pokud schvalovací orgán rozhodne, že je nutno provést dodatečná měření mezi jednotlivými body zvolenými výrobcem, oznámí to výrobci. Výrobce vyhotoví revidovaný program akumulace doby provozu a schvalovací orgán jej odsouhlasí.

3.2.3   Zkoušky motoru

3.2.3.1   Stabilizace motoru

3.2.3.1.1   Pro každou rodinu motorů se stejným systémem následného zpracování výrobce určí počet hodin chodu nesilničního mobilního stroje nebo motoru, po nichž se činnost motoru se systémem následného zpracování stabilizuje. Na žádost schvalovacího orgánu výrobce poskytne údaje a analýzu použitou k tomuto určení. Výrobce si případně může ke stabilizaci systému následného zpracování zvolit chod motoru nebo nesilničního mobilního stroje po dobu 60 až 125 hodin nebo ekvivalentní doby v cyklu stárnutí.

3.2.3.1.2   Za konec stabilizačního intervalu stanoveného v bodu 3.2.3.1.1 se považuje začátek programu akumulace doby provozu.

3.2.3.2   Zkoušky akumulace doby provozu

3.2.3.2.1   Po stabilizaci motor běží po dobu programu akumulace doby provozu vybraného výrobcem, jak je popsáno v bodu 3.2.2. V pravidelných intervalech během programu akumulace doby provozu určených výrobcem a případně stanovených schvalovacím orgánem podle bodu 3.2.2.2 se zkouší plynné emise a emise pevných částic motoru v cyklech NRTC a NRSC se startem za tepla nebo cyklech LSI-NRTC a NRSC použitelných pro kategorii motoru, jak je uvedeno v příloze IV nařízení (EU) 2016/1628.

Výrobce může provádět měření emisí znečišťujících látek před systémem následného zpracování výfukových plynů odděleně od měření emisí znečišťujících látek za systémem následného zpracování výfukových plynů.

Bylo-li v souladu s bodem 3.2.2.1.4 dohodnuto, že v každém zkušebním bodě bude proveden pouze jeden zkušební cyklus (NRTC se startem za tepla, LSI-NRTC nebo NRSC), druhý zkušební cyklus (NRTC se startem za tepla, LSI-NRTC nebo NRSC) se provede na začátku a na konci programu akumulace doby provozu.

V souladu s bodem 3.2.2.1.5 v případě kategorií nebo podkategorií motorů, pro které není v příloze IV nařízení (EU) 2016/1628 uveden žádný použitelný nesilniční zkušební cyklus v neustáleném stavu, se v každém zkušebním bodě provede pouze NRSC.

3.2.3.2.2   Během programu akumulace doby provozu se provádí údržba motoru podle bodu 3.4.

3.2.3.2.3   Během programu akumulace doby provozu může být na motoru nebo nesilničním mobilním stroji prováděna neplánovaná údržba, pokud by například standardní diagnostický systém výrobce odhalil problém a sdělil operátorovi nesilničního mobilního stroje výskyt závady.

3.2.4   Podávání zpráv

3.2.4.1   Výsledky zkoušek emisí (NRTC se startem za tepla, LSI-NRTC a NRSC) provedených během programu akumulace doby provozu se poskytnou schvalovacímu orgánu. Pokud je některá zkouška emisí prohlášena za neplatnou, výrobce zdůvodní, proč tomu tak je. V takovém případě se provede během následujících 100 hodin akumulace doby provozu další série zkoušek emisí.

3.2.4.2   Výrobce uchovává záznamy o všech informacích týkajících se všech zkoušek emisí a údržby provedené na motoru během programu akumulace doby provozu. Tyto informace se předloží schvalovacímu orgánu společně s výsledky zkoušek emisí provedených během programu akumulace doby provozu.

3.2.5   Stanovení faktorů zhoršení

3.2.5.1   Při provádění programu akumulace doby provozu podle bodu 3.2.2.1.2.1 nebo bodu 3.2.2.1.2.3 se pro každou znečišťující látku naměřenou při cyklech NRTC se startem za tepla, LSI-NRTC a NRSC v každém zkušebním bodě během programu akumulace doby provozu na základě všech výsledků zkoušek provede lineární regresní analýza, která nejvíce vyhovuje. Výsledky každé zkoušky pro každou znečišťující látku se vyjádří na stejný počet desetinných míst jako mezní hodnota této znečišťující látky, která se na danou rodinu motorů vztahuje, s jedním desetinným místem navíc.

Uskutečnil-li se v souladu s bodem 3.2.2.1.4 nebo 3.2.2.1.5 v každém zkušebním bodě pouze jeden zkušební cyklus (NRTC se startem za tepla, LSI-NRTC nebo NRSC), regresní analýza se provede pouze na základě výsledků zkoušek zkušebního cyklu provedeného v každém zkušebním bodě.

Výrobce může požádat o předchozí souhlas schvalovacího orgánu s nelineární regresí.

3.2.5.2   Hodnoty emisí pro každou znečišťující látku na začátku programu akumulace doby provozu a na konci doby životnosti emisních vlastností, které se použijí pro zkoušený motor:

a)

se při provádění programu akumulace doby provozu podle bodu 3.2.2.1.2.1 nebo 3.2.2.1.2.3 určí extrapolací regresní rovnice podle bodu 3.2.5.1 nebo

b)

se při provádění programu akumulace doby provozu podle bodu 3.2.2.1.2.2 změří přímo.

Jsou-li hodnoty emisí použity u rodin motorů patřících do stejné rodiny motorů s následným zpracováním, ale s rozdílnými dobami životnosti emisních vlastností, musí se hodnoty emisí na konci doby životnosti emisních vlastností opětovně vypočítat pro každou dobu životnosti emisních vlastností pomocí extrapolace nebo interpolace regresní rovnice, jak je stanoveno v bodu 3.2.5.1.

3.2.5.3   Faktor zhoršení (DF) pro každou znečišťující látku je definován jako poměr použitých hodnot emisí na konci doby životnosti emisních vlastností a na začátku programu akumulace doby provozu (multiplikační faktor zhoršení).

Výrobce může požádat o předchozí souhlas schvalovacího orgánu s použitím aditivního faktoru zhoršení pro každou znečišťující látku. Aditivní faktor zhoršení je definován jako rozdíl hodnot emisí vypočtených na konci doby životnosti emisních vlastností a hodnoty na začátku programu akumulace doby provozu.

Příklad stanovení faktorů zhoršení pro emise NOx pomocí lineární regrese je znázorněn na obrázku 3.1.

Kombinování multiplikačních a aditivních faktorů zhoršení v jednom souboru znečišťujících látek není povoleno.

Je-li výsledkem výpočtu hodnota multiplikačního faktoru zhoršení menší než 1,00 nebo hodnota aditivního faktoru zhoršení menší než 0,00, platí hodnota faktoru zhoršení 1,0, respektive 0,00.

Bylo-li v souladu s bodem 3.2.2.1.4 dohodnuto, že v každém zkušebním bodě bude proveden jen jeden zkušební cyklus (NRTC se startem za tepla, LSI-NRTC nebo NRSC) a druhý zkušební cyklus (NRTC se startem za tepla, LSI-NRTC nebo NRSC) bude uskutečněn pouze na začátku a na konci programu akumulace doby provozu, faktor zhoršení vypočtený pro zkušební cyklus, který byl prováděn v každém zkušebním bodě, se použije rovněž na druhý zkušební cyklus.

Obrázek 3.1

Příklad stanovení faktorů zhoršení (DF)

Image

3.2.6   Přidělené faktory zhoršení

3.2.6.1   Jako alternativu k programu akumulace doby provozu mohou výrobci motorů zvolit použití přidělených multiplikačních faktorů zhoršení uvedených v tabulce 3.1.

Tabulka 3.1

Přidělené faktory zhoršení

Zkušební cyklus

CO

HC

NOx

PM

PN

NRTC a LSI-NRTC

1,3

1,3

1,15

1,05

1,0

NRSC

1,3

1,3

1,15

1,05

1,0

Nejsou dány přidělené aditivní faktory zhoršení. Přidělené aditivní faktory zhoršení se nepřevádějí na přidělené multiplikační faktory.

U PN smí být použit buď aditivní faktor zhoršení 0,0, nebo multiplikační faktor zhoršení 1,0 ve spojení s výsledky předchozí zkoušky faktorů zhoršení, při které nebyla zjištěna hodnota PN, pokud jsou splněny obě tyto podmínky:

a)

předchozí zkouška faktorů zhoršení byla provedena s technologií motoru, která by byla způsobilá pro zahrnutí v rodině motorů se stejným systémem následného zpracování, jak stanoví bod 3.1.2, jako je rodina motorů, pro kterou se mají použít faktory zhoršení, a

b)

výsledky zkoušek byly použity v předchozím schválení typu uděleným před příslušným datem EU schválení typu uvedeným v příloze III nařízení (EU) 2016/1628.

3.2.6.2   Jsou-li použity přidělené faktory zhoršení, výrobce předloží schvalovacímu orgánu solidní důkazy, že lze reálně předpokládat, že životnost emisních vlastností součástí k regulaci emisí koresponduje s těmito přidělenými faktory. Tyto důkazy mohou být založeny na konstrukční analýze, nebo zkouškách, nebo na kombinaci obojího.

3.2.7   Použití faktorů zhoršení

3.2.7.1   Po aplikaci faktorů zhoršení na výsledek zkoušky změřený podle přílohy VI (cyklem vážená specifická hodnota emisí pevných částic a jednotlivých plynů) musí motory splňovat příslušné mezní hodnoty emisí pro každou znečišťující látku podle své rodiny motorů. V závislosti na druhu faktoru zhoršení se použijí tato ustanovení:

a)

multiplikační: (cyklem vážená specifická hodnota emisí) × DF ≤ mezní hodnota emisí;

b)

aditivní: (cyklem vážená specifická hodnota emisí) + DF ≤ mezní hodnota emisí.

Cyklem vážená specifická hodnota emisí může v náležitých případech zahrnovat korekci o občasnou regeneraci.

3.2.7.2   V případě multiplikačního faktoru zhoršení u NOx + HC se určí separátní faktory pro HC a NOx a použijí se samostatně při výpočtu zhoršené úrovně emisí z výsledků zkoušky emisí, dříve než se výsledné zhoršené hodnoty NOx a HC zkombinují k ověření shody s mezní hodnotou emisí.

3.2.7.3   Výrobce může přenést faktory zhoršení určené pro rodinu motorů se stejným systémem následného zpracování na motor, který do téže rodiny motorů se stejným systémem následného zpracování nespadá. V těchto případech musí výrobce schvalovacímu orgánu prokázat, že motor, pro který byla rodina systému následného zpracování původně zkoušena, a motor, na který se faktory zhoršení přenášejí, mají obdobné technické specifikace a požadavky na montáž do nesilničního mobilního stroje a že emise z tohoto motoru jsou obdobné.

Pokud se faktory zhoršení přenášejí na motor s odlišnou dobou životnosti emisních vlastností, musí se faktory zhoršení opětovně vypočítat pro příslušnou dobu životnosti emisních vlastností pomocí extrapolace nebo interpolace regresní rovnice, jak je stanoveno v bodě 3.2.5.1.

3.2.7.4   Faktor zhoršení pro každou znečišťující látku v každém uplatnitelném zkušebním cyklu se zaznamená do zkušebního protokolu uvedeného v příloze VI prováděcího nařízení (EU) 2017/656.

3.3   Kontrola shodnosti výroby

3.3.1   Shodnost výroby z hlediska dodržování úrovně emisí se kontroluje podle oddílu 6 přílohy II.

3.3.2   Výrobce může při provádění zkoušky pro EU schválení typu současně měřit emise znečišťujících látek před systémem následného zpracování výfukových plynů. Za tímto účelem může výrobce stanovit neformální faktory zhoršení samostatně pro motor bez systému následného zpracování a pro systém následného zpracování, které může výrobce použít jako pomůcku pro audit na konci výrobní linky.

3.3.3   Pro účely EU schválení typu se do zkušebního protokolu uvedeného v dodatku 1 k příloze VI prováděcího nařízení (EU) 2017/656 zaznamenají pouze faktory zhoršení určené v souladu s bodem 3.2.5 nebo 3.2.6.

3.4   Údržba

Pro účely programu akumulace doby provozu se údržba provádí v souladu s příručkou výrobce pro servis a údržbu.

3.4.1   Plánovaná údržba související s emisemi

3.4.1.1   Plánovaná údržba související s emisemi po dobu provozu motoru za účelem provedení programu akumulace doby provozu se musí uskutečnit v intervalech, které jsou ekvivalentní intervalům uvedeným v pokynech k údržbě, které poskytne výrobce konečnému uživateli nesilničního mobilního stroje nebo motoru. Tento plán údržby je možno v případě potřeby během programu akumulace doby provozu aktualizovat za předpokladu, že z plánu údržby není vyškrtnuta žádná činnost údržby poté, co byla provedena na zkušebním motoru.

3.4.1.2   Každé seřízení, demontáž, čištění nebo výměna kritických součástí souvisejících s emisemi prováděné v pravidelných časových odstupech v době životnosti emisních vlastností s cílem předejít chybnému fungování motoru se smějí provádět jen v rozsahu, který je technicky nezbytný pro správné fungování systému regulace emisí. Plánovaná výměna kritických součástí souvisejících s emisemi, které nejsou považovány za běžně měněné položky, se během programu akumulace doby provozu neprovádí. V této souvislosti se za běžně měněné položky považují spotřební položky pro údržbu určené pro pravidelnou výměnu nebo položky, které je třeba vyčistit po uplynutí určité doby provozu motoru.

3.4.1.3   Jakékoli případné požadavky na plánovanou údržbu musí být před udělením EU schválení typu schváleny schvalovacím orgánem a musí být zahrnuty v příručce pro zákazníka. Schvalovací orgán neodmítne schválit požadavky na údržbu, pokud jsou přiměřené a technicky nezbytné, včetně těch, které jsou uvedeny v bodě 1.6.1.4.

3.4.1.4   Výrobce motoru pro programy akumulace doby provozu specifikuje veškerá seřízení, čištění, údržbu (v případě potřeby) a plánovanou výměnu těchto součástí:

filtry a chladiče v systému recirkulace výfukových plynů (EGR),

případný ventil pro odvětrávání klikové skříně,

koncovky vstřikovačů paliva (je povoleno pouze čištění),

vstřikovače paliva,

turbodmychadlo,

elektronická řídicí jednotka motoru a související čidla a ovládací prvky,

systém následného zpracování emisí pevných částic (včetně souvisejících součástí),

systém následného zpracování emisí NOx (včetně souvisejících součástí),

systém recirkulace výfukových plynů (EGR), včetně všech regulačních ventilů a potrubí,

jakýkoli další systém následného zpracování výfukových plynů.

3.4.1.5   Plánovaná kritická údržba související s emisemi se musí provádět pouze tehdy, musí-li se uskutečnit v provozu a požadavek je sdělen konečnému uživateli motoru nebo nesilničního mobilního stroje.

3.4.2   Změny plánované údržby

Výrobce musí u schvalovacího orgánu podat žádost o schválení každé nové plánované údržby, kterou chce provést během programu akumulace doby provozu a následně doporučit konečným uživatelům nesilničního mobilního stroje nebo motoru. Žádost musí být doložena údaji, které odůvodňují potřebu nové plánované údržby a interval údržby.

3.4.3   Plánovaná údržba nesouvisející s emisemi

Plánovanou údržbu nesouvisející s emisemi, která je přiměřená a technicky nezbytná (např. výměna oleje, výměna olejového filtru, výměna palivového filtru, výměna vzduchového filtru, údržba chladicí soustavy, seřízení volnoběhu, regulátor, kontrola šroubových spojů motoru předepsaným utahovacím momentem, vůle ventilů, vůle vstřikovače, seřízení napnutí hnacích řemenů atd.), je možno provádět na motorech či nesilničních mobilních strojích vybraných pro program akumulace doby provozu v nejdelších možných intervalech, které výrobce konečnému uživateli doporučuje (např. nikoli v intervalech doporučených při provozu s velkým zatížením).

3.5   Opravy

3.5.1   Opravy součástí motoru vybraného ke zkouškám v rámci programu akumulace doby provozu se provádějí pouze v důsledku poruchy součásti nebo chybné funkce motoru. Opravy motoru, systému regulace emisí nebo palivového systému nejsou přípustné, vyjma v míře vymezené v bodě 3.5.2.

3.5.2   Jestliže během programu akumulace doby provozu selže sám motor, jeho systém regulace emisí nebo jeho palivový systém, považuje se akumulace doby provozu za neplatnou a bude zahájena nová akumulace doby provozu s novým motorem.

Předchozí odstavec se nepoužije, pokud byly porouchané součásti nahrazeny rovnocennými součástmi, které prošly obdobným počtem hodin doby akumulace provozu.

4.   Kategorie a podkategorie motorů NRSh a NRS, kromě NRS-v-2b a NRS-v-3

4.1   Příslušná kategorie doby životnosti emisních vlastností a odpovídající faktor zhoršení (DF) se stanoví podle tohoto oddílu 4.

4.2   Rodina motorů se považuje za vyhovující mezním hodnotám požadovaným pro podkategorii motorů, jsou-li výsledky zkoušky emisí všech motorů reprezentujících rodinu motorů, po úpravě vynásobením faktorem zhoršení stanoveným v oddílu 2, nižší nebo rovny mezní hodnotě pro danou podkategorii motorů. Je-li však jeden nebo více výsledků zkoušky emisí jednoho nebo více motorů reprezentujících rodinu motorů, po úpravě vynásobením faktorem zhoršení stanoveným v oddílu 2, vyšší než jedna nebo více jednotlivých mezních hodnot emisí požadovaných pro uvedenou podkategorii motorů, považuje se rodina motorů za nevyhovující mezním hodnotám požadovaným pro uvedenou podkategorii motorů.

4.3   Faktory zhoršení se určují takto:

4.3.1

S nejméně jedním ze zkoušených motorů, který představuje zvolenou konfiguraci, u níž je nejpravděpodobnější, že překročí mezní hodnoty emisí HC + NOx, a který byl vyroben tak, aby představoval motory ze sériové výroby, se provede, po uplynutí počtu hodin potřebných ke stabilizaci emisí, (úplný) postup zkoušek emisí popsaný v příloze VI.

4.3.2

Jestliže se zkouší více motorů, výsledky se vypočtou jako průměrná hodnota výsledků všech zkoušených motorů a zaokrouhlí se na počet desetinných míst, který je v příslušné mezní hodnotě, zvětšený o jedno doplňkové desetinné místo.

4.3.3

Stejné zkoušky emisí se zopakují po stárnutí motoru. Postup stárnutí by měl být vytvořen tak, aby výrobce mohl předvídat očekávané zhoršení emisí v provozu v průběhu doby životnosti emisních vlastností motoru. Přitom se vezmou v úvahu druh opotřebení a ostatní zhoršující mechanismy očekávané při typickém používání spotřebitelem, které mohou ovlivnit emisní vlastnosti. Jestliže se zkouší více motorů, výsledky se vypočtou jako průměrná hodnota výsledků všech zkoušených motorů a zaokrouhlí se na počet desetinných míst, který je v příslušné mezní hodnotě, zvětšený o jedno doplňkové desetinné místo.

4.3.4

Emise na konci doby životnosti emisních vlastností (popřípadě průměrné emise) každé znečišťující látky se vydělí hodnotou stabilizovaných emisí (popřípadě průměrných emisí) a zaokrouhlí se na dvě desetinná místa. Výsledné číslo je faktorem zhoršení, jestliže není menší než 1,00, a pokud je menší než tato hodnota, je faktor zhoršení roven 1,00.

4.3.5

Výrobce může naplánovat doplňkové body zkoušek emisí mezi bodem zkoušky stabilizovaných emisí a koncem doby životnosti emisních vlastností. Jestliže jsou naplánovány mezilehlé zkoušky, musí být zkušební body rovnoměrně rozloženy v průběhu doby životnosti emisních vlastností (± 2 hodiny) a jeden z těchto zkušebních bodů musí být v polovině plné doby životnosti emisních vlastností (± 2 hodiny).

4.3.6

Pro každou znečišťující látku HC + NOx a CO se proloží přímka mezi body údajů, přičemž začátek zkoušky se zakreslí v časovém bodu nula a použije se metoda nejmenších čtverců. Faktorem zhoršení je podíl emisí vypočtených na konci doby životnosti emisních vlastností a emisí vypočtených v časovém bodu nula.

Faktor zhoršení pro každou znečišťující látku v příslušném zkušebním cyklu se zaznamená do zkušebního protokolu uvedeného v dodatku 1 k příloze VII prováděcího nařízení (EU) 2017/656.

4.3.7

Vypočtené faktory zhoršení se mohou vztahovat také na další rodiny motorů kromě rodiny, pro kterou byl proveden výpočet, jestliže výrobce předloží před EU schválením typu schvalovacímu orgánu přijatelné odůvodnění, že u dotyčných rodin motorů lze očekávat na základě jejich konstrukce a použité technologie, že budou mít podobné vlastnosti zhoršování emisí.

Dále je uveden seznam skupin v závislosti na konstrukci a technologii, který však není vyčerpávající:

konvenční dvoudobé motory bez systému následného zpracování emisí,

konvenční dvoudobé motory s katalyzátorem se stejným aktivním materiálem a stejnou náplní a se stejným počtem komůrek na cm2,

dvoudobé motory se systémem vyplachování,

dvoudobé motory se systémem vyplachování s katalyzátorem se stejným aktivním materiálem a stejnou náplní a se stejným počtem komůrek na cm2,

čtyřdobé motory s katalyzátorem, se stejnou technikou ventilů a s identickým systémem mazání,

čtyřdobé motory bez katalyzátoru, se stejnou technikou ventilů a s identickým systémem mazání.

4.4   Kategorie doby životnosti emisních vlastností

4.4.1   U motorů kategorií uvedených v tabulce V-3 nebo V-4 v příloze V nařízení (EU) 2016/1628, které mají alternativní hodnoty pro dobu životnosti emisních vlastností, výrobci deklarují příslušnou kategorii doby životnosti emisních vlastností (kategorii EDP) pro každý motor nebo každou rodinu při EU schvalování typu. Tato kategorie je kategorií z tabulky 3.2, která se co nejvíce blíží očekávané užitečné životnosti zařízení, do nichž se mají motory montovat podle údaje výrobce motoru. Výrobci musí uchovávat údaje, které odůvodňují jeho volbu kategorie doby životnosti emisních vlastností pro každou rodinu motorů. Tyto údaje musí být předloženy schvalovacímu orgánu na vyžádání.

Tabulka 3.2

Kategorie EDP

Kategorie EDP

Použití motoru

Kat. 1

Spotřební výrobky

Kat. 2

Poloprofesionální výrobky

Kat. 3

Profesionální výrobky

4.4.2   Výrobce musí ke spokojenosti schvalovacího orgánu prokázat, že deklarovaná kategorie EDP je přiměřená. Údaje odůvodňující, proč výrobce zvolil konkrétní kategorii EDP pro danou rodinu motorů, mohou obsahovat, avšak nejsou omezeny na:

přehledy životnosti zařízení, do kterých jsou dotyčné motory namontovány,

technické vyhodnocení motorů, které zestárly v provozu, aby se zjistilo, kdy se výkon motoru zhorší natolik, že jeho užitečnost a/nebo spolehlivost dosáhne stavu, který vyžaduje generální opravu nebo výměnu,

prohlášení o zárukách a záruční lhůty,

marketingové materiály týkající se životnosti motoru,

zprávy o poruchách od uživatelů motoru a

technická vyhodnocení životnosti (v hodinách) specifických technologií motorů, materiálů motorů nebo konstrukcí motorů.


PŘÍLOHA IV

Požadavky týkající se strategie pro regulaci emisí, opatření k regulaci emisí NOx a opatření k regulaci emisí pevných částic

1.   Definice, zkratky a obecné požadavky

1.1.   Pro účely této přílohy se použijí tyto definice a zkratky:

1)

„diagnostickým chybovým kódem“ nebo „DTC“ se rozumí numerický nebo alfanumerický identifikátor, který identifikuje nebo označuje chybnou funkci regulace emisí NOx a/ chybnou funkci regulace emisí pevných částic;

2)

„potvrzeným a aktivním DTC“ se rozumí DTC, který je uložen během časového intervalu, v němž systém NCD a/nebo PCD zjistí, že došlo k chybné funkci;

3)

„rodinou motorů s NCD“ se rozumí výrobcem stanovená skupina motorů, které používají stejné metody monitorování a diagnostiky chybných funkcí regulace emisí NOx;

4)

„diagnostickým systémem pro regulaci emisí NOx“ nebo „NCD“ se rozumí na motoru nainstalovaný systém, který je schopen:

a)

zjistit chybnou funkci regulace emisí NOx;

b)

určit pravděpodobnou příčinu chybné funkce regulace emisí NOx pomocí informací ukládaných do paměti počítače a/nebo přenosem těchto informací mimo vozidlo;

5)

„chybnou funkcí regulace emisí NOx“ nebo „NCM“ se rozumí pokus zasahovat do systému regulace emisí NOx motoru nebo chybná funkce tento systém ovlivňující, jež může být způsobena nedovoleným zásahem, což podle tohoto nařízení vyžaduje aktivaci systému varování nebo upozornění, jakmile je chybná funkce zjištěna;

6)

„diagnostickým systémem regulace emisí pevných částic“ nebo „PCD“ se rozumí na motoru nainstalovaný systém, který je schopen:

a)

zjistit chybnou funkci regulace emisí pevných částic;

b)

určit pravděpodobnou příčinu chybné funkce regulace emisí pevných částic pomocí informací ukládaných do paměti počítače a/nebo přenést tyto informace mimo vozidlo;

7)

„chybnou funkcí regulace emisí pevných částic“ nebo „PCM“ se rozumí pokus o nedovolený zásah do filtru částic nebo chybná funkce tento filtr ovlivňující, jež může být způsobena nedovoleným zásahem, což podle tohoto nařízení vyžaduje aktivaci varování, jakmile je chybná funkce zjištěna;

8)

„rodinou motorů s PCD“ se rozumí výrobcem stanovená skupina motorů, které používají stejné metody monitorování a diagnostiky chybných funkcí regulace emisí pevných částic;

9)

„čtecím nástrojem“ se rozumí externí zkušební zařízení pro komunikaci se systémem NCD a/nebo PCD mimo vozidlo.

1.2.   Teplota okolí

Aniž je dotčen čl. 2 odst. 7, odkazuje-li se na teplotu okolí v souvislosti s prostředími jinými než laboratorní prostředí, použijí se tato ustanovení:

1.2.1.

Pro motor nainstalovaný na zkušebním stavu je teplotou okolí teplota spalovaného vzduchu přiváděného do motoru, před jakoukoli částí zkoušeného motoru.

1.2.2.

Pro motor nainstalovaný v nesilničním mobilním stroji je teplotou okolí teplota vzduchu v bezprostřední blízkosti nesilničního mobilního stroje.

2.   Technické požadavky týkající se strategií pro regulaci emisí

2.1.   Tento oddíl 2 se použije pro elektronicky řízené motory kategorií NRE, NRG, IWP, IWA, RLL a RLR splňující mezní hodnoty emisí „etapy V“, které jsou stanoveny v příloze II nařízení (EU) 2016/1628, a využívající elektronické řízení, které umožňuje stanovit množství i časování vstřiku paliva, nebo využívající elektronické řízení, které umožňuje aktivovat, deaktivovat nebo upravovat systém regulace emisí používaný ke snížení emisí NOx.

2.2.   Požadavky na základní strategii pro regulaci emisí

2.2.1.   Základní strategie pro regulaci emisí musí být navržena tak, aby umožnila motoru za běžného používání splnit požadavky tohoto nařízení. Normální používání není omezeno na podmínky regulace uvedené v bodě 2.4.

2.2.2.   Základní strategie pro regulaci emisí zahrnují mimo jiné mapy nebo algoritmy pro regulaci:

a)

časování vstřiku paliva nebo zážehu (časování motoru);

b)

recirkulace výfukových plynů (EGR);

c)

dávkování činidla pro katalyzátor SCR (selektivní katalytická redukce).

2.2.3.   Je zakázána jakákoli základní strategie pro regulaci emisí, která dokáže rozlišovat provoz motoru při normalizované zkoušce pro EU schválení typu a za jiných provozních podmínek, v důsledku čehož může při provozu za podmínek jiných, než které jsou převážně zahrnuty do postupu zkoušky pro EU schválení typu, snížit úroveň regulace emisí.

2.3.   Požadavky na pomocnou strategii pro regulaci emisí

2.3.1.   Pomocná strategie pro regulaci emisí smí být motorem nebo nesilničním mobilním strojem aktivována za předpokladu, že tato pomocná strategii pro regulaci emisí:

2.3.1.1.

trvale nesnižuje účinnost systému regulace emisí;

2.3.1.2.

je v činnosti pouze mimo podmínek regulace uvedených v bodech 2.4.1, 2.4.2 nebo 2.4.3 pro účely definované v bodě 2.3.5 a pouze tehdy, je-li to pro tyto účely nutné, s výjimkou povolení podle bodů 2.3.1.3, 2.3.2 a 2.3.4;

2.3.1.3.

je aktivována pouze výjimečně za podmínek regulace podle bodů 2.4.1, 2.4.2 nebo 2.4.3, pokud je to prokazatelně nutné pro účely uvedené v bodě 2.3.5 a pokud to schvalovací orgán schválil, a není aktivována na dobu delší, než je to pro takové účely nutné;

2.3.1.4.

zajišťuje úroveň výkonnosti systému regulace emisí, která se co nejvíce blíží úrovni, kterou zajišťuje základní strategie regulace emisí.

2.3.2.   Pokud je pomocná strategie pro regulaci emisí během zkoušky pro EU schválení typu aktivována, aktivace není omezena na výskyt mimo podmínek regulace uvedených v bodě 2.4 a účel není omezen na kritéria uvedená v bodě 2.3.5.

2.3.3.   Pokud pomocná strategie pro regulaci emisí během zkoušky pro EU schválení typu aktivována není, musí se prokázat, že pomocná strategie pro regulaci emisí je aktivní pouze po dobu nezbytně nutnou pro účely uvedené v bodě 2.3.5.

2.3.4.   Provoz při nízké teplotě

Pomocná strategie pro regulaci emisí smí být aktivována u motoru vybaveného recirkulací výfukových plynů (EGR) bez ohledu na podmínky regulace uvedené v bodě 2.4, pokud je teplota okolí nižší než 275 K (2 °C) a je splněno jedno z těchto dvou kritérií:

a)

teplota v sacím potrubí je menší nebo rovna teplotě definované podle následující rovnice: IMTc = PIM / 15,75 + 304,4, kde: IMTc je vypočtená teplota v sacím potrubí v kelvinech a PIM je absolutní tlak v sacím potrubí v kPa,

b)

teplota chladicí kapaliny motoru je menší nebo rovna teplotě definované podle následující rovnice: ECTc = PIM / 14 004 + 325,8, kde: ECTc je vypočtená teplota chladicí kapaliny motoru v kelvinech a PIM je absolutní tlak v sacím potrubí v kPa.

2.3.5.   S výjimkou povolení podle bodu 2.3.2 smí být pomocná strategie pro regulaci emisí aktivována pouze pro tyto účely:

a)

palubními signály za účelem ochrany motoru (včetně ochrany zařízení k řízení proudu vzduchu) a/nebo ochrany nesilničního mobilního stroje, do nějž je motor instalován, před poškozením;

b)

s ohledem na provozní bezpečnost;

c)

z důvodu zabránění nadměrným emisím během startu za studena nebo zahřívání a během vypnutí motoru;

d)

pokud se používá k povolení vyšších emisí jedné regulované znečišťující látky za určitých okolních nebo provozních podmínek, aby byla zachována regulace všech ostatních regulovaných znečišťujících látek v rámci mezních hodnot emisí, které odpovídají dotyčnému motoru. Cílem je kompenzovat přirozeně se vyskytující jevy tak, aby byla zajištěna přijatelná regulace všech složek emisí.

2.3.6.   Výrobce technické zkušebně během zkoušky EU schválení typu prokáže, že je provádění pomocné strategie pro regulaci emisí v souladu s ustanoveními tohoto oddílu. Podstatou tohoto prokazování bude vyhodnocení dokumentace uvedené bodě 2.6.

2.3.7.   Je zakázáno provádění pomocné strategie pro regulaci emisí, která není v souladu s body 2.3.1 až 2.3.5.

2.4.   Podmínky regulace

Podmínky regulace stanoví nadmořskou výšku, teplotu okolí a rozsah chladicí kapaliny, na základě čehož se určuje, zda pomocné strategie pro regulaci emisí smí být aktivovány obecně nebo pouze výjimečně podle bodu 2.3.

Podmínky regulace stanoví atmosférický tlak, který se měří jako absolutní atmosférický statický tlak (za vlhkého nebo suchého stavu) („atmosférický tlak“)

2.4.1.   Podmínky regulace pro motory kategorií IWP a IWA:

a)

nadmořská výška nepřekračující 500 m (nebo nepřekračující ekvivalentní atmosférický tlak 95,5 kPa);

b)

teplota okolí v rozmezí 275 K až 303 K (2 °C až 30 °C);

c)

teplota chladicí kapaliny nad 343 K (70 °C).

2.4.2.   Podmínky regulace pro motory kategorie RLL:

a)

nadmořská výška nepřekračující 1 000 m (nebo nepřekračující ekvivalentní atmosférický tlak 90 kPa);

b)

teplota okolí v rozmezí 275 K až 303 K (2 °C až 30 °C);

c)

teplota chladicí kapaliny nad 343 K (70 °C).

2.4.3.   Podmínky regulace pro motory kategorií NRE, NRG a RLR:

a)

atmosférický tlak vyšší než 82,5 kPa nebo odpovídající této hodnotě;

b)

teplota okolí v následujícím rozmezí:

rovna nebo vyšší než 266 K (– 7 °C),

nižší nebo rovna teplotě určené následující rovnicí při stanoveném atmosférickém tlaku: Tc = – 0,4514 × (101,3 – Pb) + 311, kde: Tc je vypočtená teplota okolí v kelvinech a Pb je atmosférický tlak v kPa;

c)

teplota chladicí kapaliny nad 343 K (70 °C).

2.5.   Pokud se pro odhad teploty okolního vzduchu používá teplotní čidlo vzduchu vstupujícího do motoru, vyhodnotí se pro typ motoru nebo rodinu motorů jmenovitý rozdíl mezi dvěma body měření. V případě použití se naměřená teplota vzduchu vstupujícího do motoru upraví o hodnotu rovnající se jmenovitému rozdílu za účelem odhadu teploty okolí pro instalaci využívající určený typ motoru nebo rodinu motorů.

Hodnocení rozdílu se provede podle osvědčeného technického úsudku na základě technických prvků (výpočtů, simulací, výsledků pokusů, údajů atd.) včetně:

a)

obvyklých kategorií nesilničních mobilních strojů, do kterých bude motor tohoto typu nebo této rodiny instalován, a

b)

návodu k montáži, který výrobci původního zařízení poskytl výrobce.

Kopie hodnocení se na vyžádání poskytne schvalovacímu orgánu.

2.6.   Požadavky na dokumentaci

Výrobce musí dodržet požadavky na dokumentaci stanovené v bodu 1.4 části A přílohy I prováděcího nařízení (EU) 2017/656 a v dodatku 2 k uvedené příloze.

3.   Technické požadavky týkající se opatření pro regulaci emisí NOx

3.1.   Tento oddíl 3 se použije pro elektronicky řízené motory kategorií NRE, NRG, IWP, IWA, RLL a RLR splňující mezní hodnoty emisí „etapy V“, které jsou stanoveny v příloze II nařízení (EU) 2016/1628, a využívající elektronické řízení, které umožňuje stanovit množství i časování vstřiku paliva, nebo využívající elektronické řízení, které umožňuje aktivovat, deaktivovat nebo upravovat systém regulace emisí sloužící ke snižování emisí NOx.

3.2.   Výrobce poskytne úplné informace o funkčních provozních vlastnostech opatření k regulaci emisí NOx, s využitím dokumentů uvedených v příloze I prováděcího nařízení (EU) 2017/656.

3.3.   Strategie pro regulaci emisí NOx musí fungovat za všech podmínek vnějšího prostředí, které se pravidelně vyskytují na území Unie, zejména při nízkých teplotách okolí.

3.4.   Výrobce prokáže, že emise amoniaku během příslušného cyklu zkoušky emisí v rámci postupu zkoušky pro EU schválení typu při použití činidla nepřesáhnou střední hodnotu 25 ppm u motorů kategorie RLL a 10 ppm u motorů všech ostatních příslušných kategorií.

3.5.   Pokud jsou na nesilničním mobilním stroji namontovány nádrže na činidlo, nebo jsou k takovému stroji připojeny, musí se zajistit prostředky k odebrání vzorku činidla uvnitř nádrží. Místo odběru vzorků musí být snadno dostupné bez použití speciálních pomůcek nebo zařízení.

3.6.   Kromě požadavků uvedených v bodech 3.2 až 3.5 se použijí tyto požadavky:

a)

pro motory kategorie NRG technické požadavky stanovené v dodatku 1;

b)

pro motory kategorie NRE:

i)

požadavky stanovené v dodatku 2, je-li motor výhradně určen k použití místo motorů etapy V kategorií IWP a IWA, podle čl. 4 odst. 1 bodu 1) písm. b) nařízení (EU) 2016/1628, nebo

ii)

požadavky stanovené v dodatku 1 na motory nezahrnuté v bodu i);

c)

pro motory kategorií IWP, IWA a RLR technické požadavky stanovené v dodatku 2;

d)

pro motory kategorie RLL technické požadavky stanovené v dodatku 3.

4.   Technické požadavky týkající se opatření pro regulaci emisí pevných znečisťujících látek

4.1.   Tento oddíl se použije pro motory podkategorií, na které se vztahuje mezní hodnota PN podle mezních hodnot emisí „etapy V“ stanovených v příloze II nařízení (EU) 2016/1628 a které jsou vybavené systémem následného zpracování pevných částic. V případech, kdy systém regulace emisí NOx a systém regulace emisí pevných částic sdílejí stejné fyzické součásti (např. tentýž nosič (SCR na filtru), totéž čidlo teploty výfukových plynů), požadavky tohoto oddílu se nepoužijí pro žádnou součást nebo chybnou funkci, pokud po zvážení odůvodněného posouzení poskytnutého výrobcem schvalovací orgán dospěje k závěru, že chybná funkce systému regulace emisí pevných částic v oblasti působnosti tohoto oddílu by vedla k chybné funkci odpovídajícího systému regulace emisí NOx v oblasti působnosti oddílu 3.

4.2.   Podrobné technické požadavky týkající se opatření k regulaci emisí pevných znečišťujících látek jsou uvedeny v dodatku 4.

Dodatek 1

Dodatečné technické požadavky týkající se opatření k regulaci emisí NOx pro motory kategorií NRE a NRG, včetně metody prokázání těchto strategií

1.   Úvod

Tento dodatek stanoví dodatečné požadavky k zajištění správné funkce opatření k regulaci emisí NOx. Obsahuje požadavky na motory, jež ke snížení emisí používají činidlo. EU schválení typu je podmíněno uplatňováním příslušných ustanovení o pokynech pro operátora, montážní dokumentaci, systému varování operátora, systému upozornění a ochraně činidla před zamrznutím, které jsou uvedeny v tomto dodatku.

2.   Obecné požadavky

Motor musí být vybaven diagnostickým systémem pro regulaci emisí NOx (NCD), který dokáže určit chybné funkce regulace emisí NOx. Každý motor, na který se vztahuje tento oddíl, musí být navržen, vyroben a namontován tak, aby umožnil splnit tyto požadavky po celou dobu běžné životnosti motoru a za obvyklých podmínek používání. Při plnění tohoto cíle je přijatelné, aby motory, které jsou používány déle, než je doba životnosti emisních vlastností uvedená v příloze V nařízení (EU) 2016/1628, vykazovaly určité zhoršení výkonnosti a citlivosti diagnostického systému pro regulaci emisí NOx (NCD), a to takové, že mezní hodnoty uvedené v této příloze mohou být překročeny dříve, než dojde k aktivaci systémů varování a/nebo upozornění.

2.1   Požadované informace

2.1.1   Pokud systém regulace emisí vyžaduje činidlo, musí výrobce v souladu s částí B přílohy I prováděcího nařízení (EU) 2017/656 uvést druh činidla, informace o koncentraci, pokud je činidlo roztokem, jeho provozních teplotních podmínkách a odkaz na mezinárodní normy, pokud jde o složení a kvalitu, a ostatní vlastnosti uvedeného činidla.

2.1.2   Podrobné písemné informace s úplným popisem funkčních vlastností systému varování operátora podle oddílu 4 a systému upozornění operátora podle oddílu 5 se předloží při EU schvalování typu schvalovacímu orgánu.

2.1.3   Výrobce poskytne výrobci původního zařízení dokumenty s pokyny k takové instalaci motoru v nesilničním mobilním stroji, aby motor, jeho systém regulace emisí a součásti nesilničních mobilních strojů fungovaly v souladu s požadavky tohoto dodatku. Tato dokumentace musí obsahovat podrobné technické požadavky týkající se motoru (software, hardware a komunikace), jichž je zapotřebí ke správné instalaci motoru v nesilničním mobilním stroji.

2.2   Provozní podmínky

2.2.1   Diagnostický systém pro regulaci emisí NOx musí být provozuschopný za následujících podmínek:

a)

teploty okolí v rozmezí 266 K až 308 K (– 7 oC až 35 oC);

b)

nadmořská výška do 1 600 m;

c)

teplota chladicí kapaliny vyšší než 343 K (70 °C).

Tento oddíl 2 se nevztahuje na monitorování hladiny činidla v nádrži, kdy monitorování probíhá za všech podmínek, které měření technicky umožňují (např. za všech podmínek, kdy kapalné činidlo není zamrzlé).

2.3   Ochrana činidla před zamrznutím

2.3.1   Je povoleno použít vyhřívanou nebo nevyhřívanou nádrž na činidlo a systém dávkování. Vyhřívaný systém musí splňovat požadavky bodu 2.3.2. Nevyhřívaný systém musí splňovat požadavky bodu 2.3.3.

2.3.1.1   Údaje o použití nevyhřívané nádrže na činidlo a systému dávkování musí být uvedeny v písemných pokynech pro konečného uživatele nesilničního mobilního stroje.

2.3.2   Nádrž na činidlo a systém dávkování

2.3.2.1   Došlo-li k zamrznutí činidla, musí být činidlo opět použitelné nejpozději do 70 minut od nastartování vozidla při teplotě okolí 266 K (– 7 °C).

2.3.2.2   Konstrukční kritéria pro vyhřívaný systém

Vyhřívaný systém musí být navržen tak, aby při zkoušení předepsaným způsobem splňoval provozní požadavky stanovené v tomto oddílu 2.

2.3.2.2.1   Nádrž na činidlo a systém dávkování se odstaví při 255 K (– 18 °C) na 72 hodin, nebo dokud činidlo neztuhne, podle toho, co nastane dříve.

2.3.2.2.2   Po době odstavení stanovené v bodu 2.3.2.2.1 se nesilniční mobilní stroj / motor nastartuje a udržuje v chodu při teplotě okolí 266 K (– 7 °C) nebo nižší takto:

a)

10 až 20 minut při volnoběhu;

b)

až 50 minut při maximálně 40 % jmenovitého zatížení.

2.3.2.2.3   Při dokončení zkušebního postupu stanoveného v bodě 2.3.2.2.2 musí být systém dávkování činidla plně funkční.

2.3.2.3   Vyhodnocení konstrukčních kritérií lze provést na zkušebním stanovišti s mrazicí komorou, přičemž se použije celý nesilniční mobilní stroj nebo jeho části, jež odpovídají těm, které mají být namontovány na nesilniční mobilní stroj, nebo na základě provozních zkoušek.

2.3.3   Aktivace systému varování a upozornění operátora u nevyhřívaného systému

2.3.3.1   Jestliže při teplotě okolí ≤ 266 K (– 7 °C) nedojde k dávkování činidla, musí být aktivován systém varování operátora popsaný v oddílu 4.

2.3.3.2   Jestliže při teplotě okolí ≤ 266 K (– 7 °C), nedojde k dávkování činidla do 70 minut po nastartování motoru, musí být aktivován systém důrazného upozornění řidiče popsaný v bodu 5.4.

2.4   Požadavky na diagnostiku

2.4.1   Diagnostický systém pro regulaci emisí NOx (NCD) musí dokázat určit chybné funkce regulace emisí NOx (NCM) prostřednictvím diagnostických chybových kódů (DTC) uložených v paměti počítače a musí být schopen předat tyto informace mimo vozidlo.

2.4.2   Požadavky na záznam diagnostických chybových kódů (DTC)

2.4.2.1   Systém NCD musí zaznamenat DTC pro každou jednotlivou chybnou funkci regulace emisí NOx (NCM).

2.4.2.2   Zda existuje zjistitelná chybná funkce, musí systém NCD vyhodnotit do 60 minut od uvedení motoru do chodu. V tomto okamžiku se uloží „potvrzený a aktivní“ DTC a aktivuje se varovný systém podle oddílu 4.

2.4.2.3   V případech, kdy je zapotřebí více než 60 minut provozu, aby monitorovací funkce mohly přesně zjistit a potvrdit NCM (např. monitorovací zařízení fungující na základě statistických modelů nebo spotřeby kapalin v nesilničním mobilním stroji), může schvalovací orgán k monitorování povolit delší období, je-li taková potřeba odůvodněna výrobcem (např. technickými podklady, výsledky pokusů, interní praxí atd.).

2.4.3   Požadavky na vymazávání diagnostických chybových kódů (DTC)

a)

Vlastní systém NCD nesmí DTC z paměti počítače vymazat, dokud nebyla odstraněna porucha, která se k danému DTC vztahuje.

b)

Systém NCD může všechny DTC vymazat na základě požadavku proprietárního čtecího nástroje nebo nástroje údržby, který na žádost poskytne výrobce motoru, nebo pomocí výrobcem poskytnutého přístupového kódu.

2.4.4   Systém NCD nesmí být naprogramován nebo konstruován tak, aby se kdykoli po celou dobu životnosti motoru zcela nebo částečně deaktivoval na základě stáří nesilničního mobilního stroje, a nesmí obsahovat ani algoritmus nebo strategii určenou k průběžnému snižování účinnosti systému NCD.

2.4.5   Všechny přeprogramovatelné počítačové kódy nebo provozní parametry systému NCD musí být odolné vůči nedovoleným zásahům.

2.4.6   Rodina motorů s NCD

Výrobce zodpovídá za stanovení členů rodiny motorů s NCD. Vytváření skupin motorů v rámci rodiny motorů s NCD se provede na základě osvědčeného technického úsudku a musí být schváleno schvalovacím orgánem.

Motory, které nepatří do stejné rodiny motorů, mohou přesto patřit do stejné rodiny motorů s NCD.

2.4.6.1   Parametry vymezující rodinu motorů s NCD

Rodinu motorů s NCD lze vymezit základními konstrukčními parametry, které musí být společné u motorů této rodiny.

Aby mohly být motory pokládány za motory z téže rodiny motorů s NCD, musí si být podobné v následujících základních parametrech:

a)

systémy regulace emisí;

b)

metody monitorování používané systémem NCD;

c)

monitorovací kritéria systému NCD;

d)

parametry monitorování (např. frekvence).

Tyto podobnosti musí být prokázány výrobcem pomocí vhodných technických postupů prokazování nebo jinými vhodnými postupy a musí být schváleny schvalovacím orgánem.

Výrobce může schvalovací orgán požádat o schválení drobných odchylek v metodách monitorování/diagnostiky systému NCD kvůli odlišnostem v konfiguraci motoru, pokud jsou tyto metody výrobcem považovány za podobné a liší se pouze tak, aby odpovídaly zvláštním charakteristikám posuzovaných součástí (například velikost, průtok výfukových plynů atd.); nebo je jejich podobnost stanovena na základě osvědčeného technického úsudku.

3.   Požadavky na údržbu

3.1   Výrobce poskytne nebo zajistí, aby byly všem konečným uživatelům nových motorů nebo strojů poskytnuty písemné pokyny o systému regulace emisí a jeho správném fungování podle přílohy XV.

4.   Systém varování operátora

4.1   Součástí nesilničního mobilního stroje musí být systém varování operátora používající vizuální varovné signály, který operátora informuje v případě, že byl zjištěn nízký stav činidla, nesprávná jakost činidla, přerušení dávkování nebo chybná funkce specifikovaná v oddílu 9, což povede k aktivaci systému upozornění operátora, nebude-li závada včas odstraněna. Systém varování musí zůstat v činnosti i v případě, že byl aktivován systém upozornění operátora popsaný v oddílu 5.

4.2   Varování nesmí být stejné jako varování používané k nahlášení chybné funkce nebo jiné údržby motoru, ačkoliv může používat stejný systém varování.

4.3   Systém varování operátora může být tvořen jedním nebo více světelnými kontrolkami nebo může zobrazovat stručné zprávy, včetně například zpráv jasně uvádějících:

a)

dobu zbývající do aktivace mírného nebo důrazného upozornění;

b)

rozsah mírného a/nebo výrazného omezení, např. míru snížení točivého momentu;

c)

podmínky, za nichž může být omezení činnosti nesilničního mobilního stroje zrušeno.

Jsou-li zobrazovány zprávy, lze k jejich zobrazení použít stejný systém používaný k jiným účelům údržby.

4.4   Výrobce může do systému varování zahrnout také zvukový prvek. Operátor smí zvuková varování zrušit.

4.5   Systém varování operátora se musí aktivovat podle ustanovení v bodech 2.3.3.1, 6.2, 7.2, 8.4 a 9.3.

4.6   Systém varování operátora se musí deaktivovat, jestliže pominuly podmínky pro jeho aktivaci. Systém varování operátora se nesmí automaticky deaktivovat, aniž by byly odstraněny důvody pro jeho aktivaci.

4.7   Systém varování může být dočasně přerušen jinými varovnými signály, které zprostředkovávají důležité zprávy týkající se bezpečnosti.

4.8   Podrobnosti o postupu aktivace a deaktivace systému varování operátora jsou popsány v oddílu 11.

4.9   Při podání žádosti o EU schválení typu podle tohoto nařízení musí výrobce prokázat funkci systému varování operátora způsobem stanoveným v oddíle 10.

5.   Systém upozornění operátora

5.1   Součástí motoru musí být systém upozornění operátora založený na jedné z následujících zásad:

5.1.1

dvoustupňový systém upozornění počínající nejprve mírným upozorněním (omezení výkonu), po němž následuje důrazné upozornění (faktické vyřazení nesilničního mobilního stroje z provozu);

5.1.2

jednostupňový systém důrazného upozornění (faktické vyřazení nesilničního mobilního stroje z provozu) aktivovaný podle podmínek pro systém mírného upozornění, jak je upřesněno v bodech 6.3.1, 7.3.1, 8.4.1 a 9.4.1.

Pokud výrobce za účelem splnění požadavku jednostupňového systému důrazného upozornění zvolí vypnutí motoru, upozornění týkající se úrovně činidla smí být na základě volby výrobce aktivováno za podmínek bodu 6.3.2 místo podmínek bodu 6.3.1.

5.2   Motor může být vybaven zařízením k vyřazení upozornění operátora z provozu, pokud splňuje požadavky bodu 5.2.1.

5.2.1   Motor může být vybaven zařízením, které upozorňování operátora dočasně vyřadí z provozu během nouzové situace vyhlášené orgánem státní správy s celostátní nebo regionální působností, složkami jeho záchranného systému nebo ozbrojenými složkami.

5.2.1.1   Je-li motor vybaven zařízením k dočasnému vyřazení upozornění operátora z provozu, použijí se všechny tyto podmínky:

a)

maximální doba, po kterou smí být upozornění operátora vyřazeno z provozu, je 120 hodin;

b)

způsob aktivace musí být navržen tak, aby se zabránilo nezáměrnému použití tím, že bude vyžadováno provedení dvou dobrovolných kroků, a musí být jasně označen minimálně varováním „POUZE PRO NOUZOVÉ POUŽITÍ“;

c)

vyřazení z provozu se automaticky deaktivuje po uplynutí 120 hodin a operátor musí mít možnost ručně toto vyřazení z provozu deaktivovat, pokud nouzová situace pomine;

d)

po uplynutí 120 hodin činnosti již nesmí být možné upozornění vyřadit z provozu, pokud zařízení k vyřazení z provozu nebylo znovu odjištěno zadáním dočasného bezpečnostního kódu výrobce nebo nedošlo ke změně konfigurace ECU provedené kvalifikovaným servisním technikem nebo rovnocennou bezpečnostní funkcí jedinečnou pro každý motor;

e)

celkový počet a doba trvání aktivací vyřazení z provozu musí být uloženy v elektronické paměti nezávislé na napájení nebo počitadlech takovým způsobem, aby bylo zajištěno, že informace nelze záměrně vymazat. Vnitrostátní kontrolní orgány musí mít možnost číst tyto záznamy čtecím nástrojem;

f)

výrobce uchovává záznam každé žádosti o opětovné odjištění zařízení k dočasnému vyřazení upozornění operátora z provozu a na požádání dá tyto záznamy k dispozici Komisi nebo vnitrostátním orgánům.

5.3   Systém mírného upozornění

5.3.1   Systém mírného upozornění se musí aktivovat, nastala-li kterákoli z podmínek stanovených v bodech 6.3.1, 7.3.1, 8.4.1 a 9.4.1.

5.3.2   Systém mírného upozornění postupně snižuje přinejmenším o 25 % maximální dosažitelný točivý moment motoru v celém rozsahu otáček motoru mezi maximálním točivým momentem a bodem přerušení regulátoru, jak je znázorněno na obrázku 4.1. Rychlost snižování točivého momentu musí být minimálně o 1 % za minutu.

5.3.3   Lze použít i jiná omezovací opatření, prokáže-li se schvalovacímu orgánu, že míra jejich důrazu je stejná nebo vyšší.

Obrázek 4.1

Schéma snížení točivého momentu při mírném upozornění

Image

5.4   Systém důrazného upozornění

5.4.1   Systém důrazného upozornění se musí aktivovat, nastala-li kterákoli z podmínek stanovených v bodech 2.3.3.2, 6.3.2, 7.3.2, 8.4.2 a 9.4.2.

5.4.2   Systém důrazného upozornění musí snížit využitelnost nesilničního mobilního stroje na takovou úroveň, která je natolik omezující, aby operátora přiměla k odstranění problémů souvisejících s oddíly 6 až 9. Přijatelné jsou následující strategie:

5.4.2.1

Točivý moment motoru mezi maximálním točivým momentem a bodem přerušení regulátoru se postupně snižuje z úrovně točivého momentu při mírném upozornění na obrázku 4.1 o přinejmenším 1 % za minutu na 50 % maximálního točivého momentu nebo méně a u motoru s proměnlivými otáčkami se otáčky postupně snižují na 60 % jmenovitých otáček nebo méně v průběhu stejné doby, během níž se snižuje točivý moment, jak je znázorněno na obrázku 4.2.

Obrázek 4.2

Schéma snížení točivého momentu při důrazném upozornění

Image

5.4.2.2

Lze použít i jiná omezovací opatření, prokáže-li se schvalovacímu orgánu, že míra jejich důrazu je stejná nebo vyšší.

5.5   V zájmu bezpečnosti a aby se umožnilo použití autokorekční diagnostiky, je k uvolnění plného výkonu motoru povoleno použít funkci potlačení automatického omezení, a to za předpokladu, že

a)

nebude v činnosti po dobu delší než 30 minut a

b)

omezí se na tři aktivace během každé doby, během níž je v činnosti systém upozornění operátora.

5.6   Systém upozornění operátora se musí deaktivovat, jestliže pominuly podmínky pro jeho aktivaci. Systém upozornění operátora se nesmí automaticky deaktivovat, aniž by byly odstraněny důvody pro jeho aktivaci.

5.7   Podrobnosti o postupu aktivace a deaktivace systému upozornění operátora jsou popsány v oddílu 11.

5.8   Při podání žádosti o EU schválení typu podle tohoto nařízení musí výrobce prokázat funkci systému upozornění operátora způsobem stanoveným v oddíle 11.

6.   Dostupnost činidla

6.1   Ukazatel množství činidla

Součástí nesilničního mobilního stroje musí být ukazatel, který operátora jasně informuje o množství činidla v nádrži na činidlo. Ukazatel množství činidla musí být přinejmenším schopen průběžně ukazovat jeho množství po dobu, během níž je aktivován systém varování operátora popsaný v oddílu 4. Ukazatel množství činidla může mít analogové nebo digitální zobrazení a může ukazovat hladinu činidla v poměru k objemu plné nádrže, zbývající množství činidla nebo odhadovaný počet provozních hodin, které zbývají do jeho vyčerpání.

6.2   Aktivace systému varování operátora

6.2.1   Systém varování operátora specifikovaný v oddílu 4 se musí aktivovat, jestliže hladina činidla klesne pod 10 % objemu nádrže nebo pod vyšší procentní hodnotu stanovenou výrobcem.

6.2.2   Varování musí být dostatečně jasné, aby v kombinaci s ukazatelem množství činidla operátor pochopil, že hladina činidla je nízká. Je-li součástí systému varování také zobrazování hlášení, vizuální varování zobrazí zprávu upozorňující na nízkou hladinu činidla (například „nízká hladina močoviny“, „nízká hladina AdBlue“ nebo „nízká hladina činidla“).

6.2.3   Není třeba, aby byl systém varování operátora od začátku nepřetržitě aktivovaný (například určitá zpráva nemusí být zobrazena trvale), avšak musí nabývat na intenzitě až k nepřetržité aktivaci, jakmile se množství činidla blíží nule a k okamžiku zapnutí systému upozornění operátora (například frekvence blikání kontrolního světla). Musí vyvrcholit vyrozuměním operátora na úrovni, jež zvolí výrobce, která je však dostatečně patrnější v okamžiku, kdy začne účinkovat systém upozornění operátora popsaný v bodu 6.3, než v okamžiku první aktivace systému varování.

6.2.4   Nepřetržité varování nesmí být možné snadno vypnout nebo ignorovat. Je-li součástí systému varování také zobrazování hlášení, zobrazí se jednoznačná zpráva (například „doplňte močovinu“, „doplňte AdBlue“ nebo „doplňte činidlo“). Nepřetržité varování může být dočasně přerušeno jinými varovnými signály, jež zprostředkovávají důležité zprávy týkající se bezpečnosti.

6.2.5   Systém varování operátora nesmí být možné vypnout, dokud nedojde k doplnění činidla na úroveň, která nevyžaduje jeho aktivaci.

6.3   Aktivace systému upozornění operátora

6.3.1   Systém mírného upozornění popsaný v bodu 5.3 se musí aktivovat, jestliže množství činidla v nádrži klesne pod 2,5 % jejího plného jmenovitého objemu nebo pod vyšší procentní hodnotu zvolenou výrobcem.

6.3.2   Systém důrazného upozornění popsaný v bodu 5.4 se musí aktivovat, jestliže je nádrž na činidlo prázdná, tj. když dávkovací systém nemůže čerpat z nádrže další činidlo nebo při jakékoliv nižší hladině než 2,5 % jejího plného jmenovitého objemu podle volby výrobce.

6.3.3   S výjimkou okolností dovolených v bodu 5.5 nesmí být možné systém mírného nebo důrazného upozornění vypnout, dokud nedojde k doplnění činidla na úroveň, která nevyžaduje aktivaci těchto systémů.

7.   Monitorování jakosti činidla

7.1   Součástí motoru nebo nesilničního mobilního stroje musí být prostředek ke zjištění přítomnosti nesprávného činidla v nesilničním mobilním stroji.

7.1.1   Výrobce specifikuje minimální přijatelnou koncentraci činidla CDmin, v důsledku čehož emise NOx z výfuku nepřesáhnou nižší z těchto hodnot: příslušná mezní hodnota NOx vynásobená 2,25 nebo příslušná mezní hodnota NOx plus 1,5 g/kWh. U podkategorií motorů s kombinovanou mezní hodnotou pro HC a NOx je příslušnou mezní hodnotou NOx pro účel tohoto bodu kombinovaná mezní hodnota pro HC a NOx snížená o 0,19 g/kWh.

7.1.1.1   Správná hodnota CDmin musí být prokázána v průběhu EU schvalování typu postupem stanoveným v oddílu 13 a musí být zaznamenána v doplněném souboru dokumentace způsobem stanoveným v oddílu 8 přílohy I.

7.1.2   Každá koncentrace činidla nižší než CDmin musí být zjištěna a pro účely bodu 7.1 je považována za nesprávné činidlo.

7.1.3   Jakost činidla musí zjišťovat konkrétní počitadlo („počitadlo jakosti činidla“). Počitadlo jakosti činidla musí počítat počet hodin provozu motoru s nesprávným činidlem.

7.1.3.1   Výrobce může selhání jakosti činidla sdružit s jednou nebo více poruchami uvedenými v oddílech 8 a 9 do jediného počitadla.

7.1.4   Podrobnosti o kritériích a mechanismech aktivace a deaktivace počitadla jakosti činidla jsou popsány v oddílu 11.

7.2   Aktivace systému varování operátora

Jakmile monitorovací systém potvrdí nesprávnou jakost činidla, musí se aktivovat systém varování operátora popsaný v oddílu 4. Je-li součástí systému varování také zobrazování hlášení, zobrazí se zpráva uvádějící důvod varování (například „zjištěna nesprávná močovina“, „zjištěno nesprávné AdBlue“ nebo „zjištěno nesprávné činidlo“).

7.3   Aktivace systému upozornění operátora

7.3.1   Systém mírného upozornění popsaný v bodu 5.3 se musí aktivovat, jestliže nedojde k nápravě jakosti činidla nejpozději do 10 hodin provozu motoru od okamžiku aktivace systému varování operátora popsané v bodu 7.2.

7.3.2   Systém důrazného upozornění popsaný v bodu 5.4 se musí aktivovat, jestliže nedojde k nápravě jakosti činidla nejpozději do 20 hodin provozu motoru od okamžiku aktivace systému varování operátora popsané v bodu 7.2.

7.3.3   V případě opakovaného výskytu chybné funkce musí být počet hodin do aktivace systémů upozornění snížen podle mechanismu popsaného v oddílu 11.

8.   Dávkování činidla

8.1   Součástí motoru musí být prostředky pro zjištění přerušení dávkování.

8.2   Počitadlo dávkování činidla

8.2.1   K dávkování musí být přiřazeno zvláštní počitadlo („počitadlo dávkování“). Počitadlo musí počítat počet provozních hodin motoru, během nichž je přerušeno dávkování činidla. Tento úkon se nepožaduje, pokud toto přerušení vyžaduje elektronická řídicí jednotka motoru, jelikož provozní podmínky nesilničního mobilního stroje jsou takové, že s ohledem na úroveň emisí nesilničního mobilního stroje není dávkováni činidla nutné.

8.2.1.1   Výrobce může poruchu dávkování činidla sdružit s jednou nebo více poruchami uvedenými v oddílech 7 a 9 do jediného počitadla.

8.2.2   Podrobnosti o kritériích a mechanismech aktivace a deaktivace počitadla dávkování činidla jsou popsány v oddílu 11.

8.3   Aktivace systému varování operátora

Systém varování operátora popsaný v oddílu 4 se musí aktivovat v případě přerušení dávkování, což spustí počitadlo dávkování podle bodu 8.2.1. Je-li součástí systému varování také zobrazování hlášení, zobrazí se zpráva uvádějící důvod varování (například „chybná funkce dávkování močoviny“, „chybná funkce dávkování AdBlue“ nebo „chybná funkce dávkování činidla“).

8.4   Aktivace systému upozornění operátora

8.4.1   Systém mírného upozornění popsaný v bodu 5.3 se musí aktivovat, jestliže nedojde k nápravě dávkování činidla nejpozději do 10 hodin provozu motoru od okamžiku aktivace systému varování operátora podle bodu 8.3.

8.4.2   Systém důrazného upozornění popsaný v bodu 5.4 se musí aktivovat, jestliže nedojde k nápravě dávkování činidla nejpozději do 20 hodin provozu motoru od okamžiku aktivace systému varování operátora podle bodu 8.3.

8.4.3   V případě opakovaného výskytu chybné funkce musí být počet hodin do aktivace systémů upozornění snížen podle mechanismu popsaného v oddílu 11.

9.   Poruchy monitorování, jež mohou být důsledkem nedovolených zásahů

9.1   Kromě hladiny činidla v nádrži, jeho jakosti a přerušení dávkování musí být monitorovány následující poruchy, protože mohou být důsledkem nedovolených zásahů:

a)

omezení funkce ventilu recirkulace výfukových plynů (EGR);

b)

poruchy diagnostického systému regulace emisí NOx (NCD), jak je popsáno v bodu 9.2.1.

9.2   Požadavky na monitorování

9.2.1   U diagnostického systému regulace emisí NOx (NCD) se sleduje výskyt elektrických poruch a odstranění nebo deaktivace každého čidla, v jejichž důsledku systém neprovádí diagnostiku ostatních závad uvedených v oddílech 6 až 8 (monitorování součástí).

Mezi čidla, jež ovlivňují tuto diagnostickou schopnost, patří mimo jiné ta, která přímo měří koncentraci NOx, čidla jakosti močoviny, čidla venkovního prostředí a čidla monitorující dávkování, hladinu a spotřebu činidla.

9.2.2   Počitadlo ventilu recirkulace výfukových plynů (EGR)

9.2.2.1   K ventilu recirkulace výfukových plynů EGR s omezenou funkcí musí být přiřazeno konkrétní počitadlo. Počitadlo ventilu recirkulace výfukových plynů EGR musí počítat počet hodin provozu motoru, ve kterých je potvrzen DTC přiřazený ventilu recirkulace s omezenou funkcí výfukových plynů EGR.

9.2.2.1.1   Výrobce může poruchu ventilu recirkulace výfukových plynů s omezenou funkcí sdružit s jednou nebo více poruchami uvedenými v oddílech 7, 8 a bodu 9.2.3 do jediného počitadla.

9.2.2.2   Podrobnosti o kritériích a mechanismech aktivace a deaktivace počitadla ventilu recirkulace výfukových plynů EGR jsou popsány v oddílu 11.

9.2.3   Počitadlo/počitadla systému NCD

9.2.3.1   Ke každé poruše monitorování uvedené v bodu 9.1 písm. b) se přiřadí zvláštní počitadlo. Počitadla systému NCD musí počítat počet hodin provozu motoru, ve kterých je potvrzen aktivní DTC přiřazený k příslušné chybné funkci systému NCD. Je povoleno sdružení několika závad do jednoho počitadla.

9.2.3.1.1   Výrobce může poruchy systému NCD sdružit s jednou nebo více poruchami uvedenými v oddílech 7, 8 a bodu 9.2.2 do jediného počitadla.

9.2.3.2   Podrobnosti o kritériích a mechanismech aktivace a deaktivace počitadla systému NCD jsou popsány v oddílu 11.

9.3   Aktivace systému varování operátora

Systém varování operátora stanovený v oddílu 4 se musí aktivovat v případě, že dojde k některé z poruch uvedených v bodu 9.1, a musí sdělit, že je nutná urychlená oprava. Je-li součástí systému varování také zobrazování hlášení, zobrazí se zpráva uvádějící důvod varování (například „dávkovací ventil činidla odpojen“ nebo „kritická porucha regulace emisí“).

9.4   Aktivace systému upozornění operátora

9.4.1   Systém mírného upozornění popsaný v bodu 5.3 se musí aktivovat, jestliže nedojde k nápravě poruchy uvedené v bodu 9.1 nejpozději do 36 hodin provozu motoru od okamžiku aktivace systému varování operátora popsané v bodu 9.3.

9.4.2   Systém důrazného upozornění popsaný v bodu 5.4 se musí aktivovat, jestliže nedojde k nápravě poruchy uvedené v bodu 9.1 nejpozději do 100 hodin provozu motoru od okamžiku aktivace systému varování operátora popsané v bodu 9.3.

9.4.3   V případě opakovaného výskytu chybné funkce musí být počet hodin do aktivace systémů upozornění snížen podle mechanismu popsaného v oddílu 11.

9.5   Jako alternativu k požadavkům v bodu 9.2 může výrobce použít čidlo NOx umístěné ve výfukovém systému. V takovém případě:

a)

hodnota NOx nepřesáhne nižší z těchto hodnot: příslušná mezní hodnota NOx vynásobená 2,25 nebo příslušná mezní hodnota NOx plus 1,5 g/kWh. U podkategorií motorů s kombinovanou mezní hodnotou pro HC a NOx je příslušnou mezní hodnotou NOx pro účel tohoto bodu kombinovaná mezní hodnota pro HC a NOx snížená o 0,19 g/kWh;

b)

lze použít hlášení poruchy „vysoké emise NOx – neznámá příčina“;

c)

znění bodu 9.4.1 se nahrazuje zněním „do 10 hodin provozu motoru“;

d)

znění bodu 9.4.2 se nahrazuje zněním „do 20 hodin provozu motoru“.

10.   Požadavky na prokazování

10.1   Obecně

Shoda s požadavky tohoto dodatku se prokazuje v průběhu EU schvalování typu způsoby vyznačenými v tabulce 4.1 a rozvedenými v tomto oddílu 10:

a)

prokázáním aktivace systému varování;

b)

případně prokázáním aktivace systému mírného upozornění;

c)

prokázáním aktivace systému důrazného upozornění.

10.2   Rodiny motorů a rodiny motorů s NCD

Splnění požadavků tohoto oddílu 10 rodinou motorů nebo rodinou motorů s NCD lze prokázat zkouškou jednoho ze členů posuzované rodiny motorů, pokud výrobce schvalovacímu orgánu prokáže, že monitorovací systémy nezbytné ke splnění požadavků tohoto dodatku jsou v rámci rodiny motorů obdobné.

10.2.1   Skutečnost, že jsou monitorovací systémy u jiných členů rodiny s NCD obdobné, lze prokázat tak, že se schvalovacím orgánům předloží materiály, jako jsou algoritmy, funkční analýzy atd.

10.2.2   Zkušební motor vybírá výrobce se souhlasem schvalovacího orgánu. Může, ale nemusí to být základní motor posuzované rodiny motorů.

10.2.3   V případech, kdy motory z některé rodiny motorů patří do rodiny motorů s NCD, jejichž typ byl již schválen podle bodu 10.2.1 (obrázek 4.3), se shodnost této rodiny motorů považuje za prokázanou bez dalších zkoušek, pokud výrobce schvalovacímu orgánu prokáže, že monitorovací systémy nezbytné ke splnění požadavků tohoto dodatku jsou v rámci posuzované rodiny motorů a rodiny motorů s NCD obdobné.

Tabulka 4.1

Znázornění obsahu postupu při prokazování podle ustanovení v bodech 10.3 a 10.4

Mechanismus

Prokazované prvky

Aktivace systému varování uvedená v bodu 10.3

2 zkoušky aktivace (včetně nedostatku činidla)

případně další prokazované prvky

Aktivace mírného upozornění specifikovaná v bodu 10.4

2 zkoušky aktivace (včetně nedostatku činidla)

případně další prokazované prvky

1 zkouška snížení točivého momentu

Aktivace důrazného upozornění specifikovaná v bodu 10.4.6

2 zkoušky aktivace (včetně nedostatku činidla)

případně další prokazované prvky

Obrázek 4.3

Dříve prokázaná shodnost rodiny motorů s NCD

Image

10.3   Prokázání aktivace systému varování

10.3.1   Shodnost aktivace systému varování se prokazuje vykonáním dvou zkoušek: nedostatek činidla a jedna kategorie poruchy v oddílech 7 až 9.

10.3.2   Výběr poruch ke zkoušce

10.3.2.1   Pro účely prokázání aktivace systému varování v případě špatné jakosti činidla se vybere činidlo s přinejmenším takovým naředěním účinné látky, jako je naředění sdělené výrobcem podle požadavků stanovených v oddílu 7.

10.3.2.2   K prokázání aktivace systému varování v případě poruch, jež mohou být důsledkem nedovolených zásahů a jsou definovány v oddílu 9, musí být výběr proveden v souladu s těmito požadavky:

10.3.2.2.1

Výrobce poskytne schvalovacímu orgánu seznam takových možných poruch.

10.3.2.2.2

Porucha, která má být předmětem zkoušky, musí být vybrána schvalovacím orgánem z tohoto seznamu uvedeného v bodu 10.3.2.2.1.

10.3.3   Prokázání

10.3.3.1   Pro účely tohoto prokázání se pro každou poruchu uvedenou v bodu 10.3.1 provede samostatná zkouška.

10.3.3.2   Během zkoušky se nesmí vyskytnout jiná porucha, než je ta, které se zkouška týká.

10.3.3.3   Před zahájením zkoušky musí být vymazány všechny DTC.

10.3.3.4   Na žádost výrobce a se souhlasem schvalovacího orgánu mohou být poruchy, kterých se zkouška týká, simulovány.

10.3.3.5   Zjišťování jiných poruch než nedostatku činidla

U poruch jiných, než je nedostatek činidla, a po instalaci nebo simulaci poruchy, se zjištění dané poruchy provede takto:

10.3.3.5.1

Systém NCD musí zareagovat na vyvolání poruchy, kterou schvalovací orgán vybral jako vhodnou v souladu s ustanoveními tohoto dodatku. To se považuje za prokázané, dojde-li k aktivaci během dvou po sobě jdoucích zkušebních cyklů systému NCD podle bodu 10.3.3.7.

Jestliže bylo v popisu monitorování uvedeno a schvalovacím orgánem schváleno, že konkrétní monitorovací funkce vyžaduje k provedení úplného monitorování více než dva zkušební cykly systému NCD, může být počet zkušebních cyklů systému NCD zvýšen na tři.

Během prokazovací zkoušky může být každý jednotlivý zkušební cyklus NCD oddělen vypnutím motoru. Délka vypnutí do dalšího nastartování musí brát v úvahu monitorování, ke kterému může dojít po vypnutí motoru, a veškeré podmínky, které musí být splněny, aby proběhlo monitorování při následujícím nastartování.

10.3.3.5.2

Aktivace systému varování se považuje za prokázanou, pokud na konci každé prokazovací zkoušky provedené podle bodu 10.3.2.1 došlo ke správné aktivaci systému varování a pro vybranou poruchu byl dosažen status DTC „potvrzený a aktivní“.

10.3.3.6   Zjištění nedostatku činidla

K prokázání aktivace systému varování v případě nedostatku činidla musí být motor v provozu po jeden nebo více zkušebních cyklů NCD, podle volby výrobce.

10.3.3.6.1   Prokazování musí začít při množství činidla v nádrži, na kterém se výrobce a schvalovací orgán dohodnou, ale které nesmí být nižší než 10 % jmenovitého objemu nádrže.

10.3.3.6.2   Funkce systému varování je považována za správnou, jsou-li současně splněny tyto podmínky:

a)

k aktivaci systému varování došlo při množství činidla větším nebo rovném 10 % objemu nádrže na činidlo a

b)

„nepřetržitý“ režim systému varování byl aktivován při hladině činidla vyšší nebo rovné hodnotě deklarované výrobcem podle ustanovení oddílu 6.

10.3.3.7   Zkušební cyklus NCD

10.3.3.7.1   Zkušební cyklus NCD, který pro účely tohoto oddílu 10 slouží k prokázání správné funkce systému NCD, je cyklus NRTC se startem za tepla pro motory podkategorie NRE-v-3, NRE-v-4, NRE-v-5 NRE-v-6 a příslušný NRSC pro všechny ostatní kategorie.

10.3.3.7.2   Na žádost výrobce a se schválením schvalovacího orgánu může být pro určitou monitorovací funkci použit jiný zkušební cyklus NCD (např. jiný než NTRC nebo NRSC). Žádost musí obsahovat prvky (odborná zdůvodnění, simulace, výsledky zkoušek atd.) jimiž se prokazuje, že:

a)

výsledkem požadovaného zkušebního cyklu bude monitorovací funkce, která se bude používat ve skutečném provozu vozidla, a

b)

příslušný zkušební cyklus NCD uvedený v bodu 10.3.3.7.1 je pro uvažované monitorování méně vhodný.

10.3.4   Aktivace systému varování se považuje za prokázanou, pokud na konci každé prokazovací zkoušky prováděné podle bodu 10.3.3 došlo ke správné aktivaci systému varovaní.

10.4   Prokazování funkce systému upozornění

10.4.1   Aktivace systému upozornění se prokazuje zkouškami na motorovém zkušebním stavu.

10.4.1.1   Veškeré součásti nebo subsystémy, které nejsou fyzicky namontovány na motoru, jako například, nikoli však výhradně, čidla teploty prostředí, čidla hladiny a systémy varování a upozornění operátora, které jsou k prokázání nezbytné, musí být pro tento účel připojeny k motoru nebo musí být simulovány způsobem uspokojivým pro schvalovací orgán.

10.4.1.2   Jestliže si to výrobce přeje a schvalovací orgán souhlasí, mohou být prokazovací zkoušky provedeny na úplném nesilničním mobilním stroji nebo zařízení buď tak, že se nesilniční mobilní stroj připevní k vhodnému zkušebnímu stavu, nebo, aniž je dotčen bod 10.4.1, jízdou po zkušební dráze za kontrolovaných podmínek.

10.4.2   Zkušebním postupem se prokazuje aktivace systému upozornění v případě nedostatku činidla a v případě jedné z poruch definovaných v oddílech 7, 8 nebo 9.

10.4.3   Pro účely tohoto prokazování:

a)

schvalovací orgán kromě nedostatku činidla vybere jednu z poruch definovaných v oddílech 7, 8 nebo 9, která bylo předtím použita při prokazování aktivace systému varování;

b)

výrobci se povoluje se souhlasem schvalovacího orgánu urychlit zkoušku tím, že nasimuluje dosažení určitého počtu hodin provozu motoru;

c)

dosažení snížení točivého momentu, které je vyžadováno u mírného upozornění, může být prokazováno zároveň s celkovým postupem schvalování výkonu motoru prováděným v souladu s tímto nařízením. V takovém případě se při prokazování funkce systému upozornění nevyžaduje samostatné měření točivého momentu;

d)

funkce důrazného upozornění se prokazuje v souladu s požadavky bodu 10.4.6.

10.4.4   Výrobce kromě toho musí prokázat funkci systému upozornění za podmínek poruch definovaných v oddílech 7, 8 nebo 9, jež nebyly vybrány k prokazovacím zkouškám popsaným v bodech 10.4.1 až 10.4.3.

Toto doplňkové prokazování může být provedeno tak, že se schvalovacímu orgánu předloží technické materiály obsahující takové důkazy, jako jsou algoritmy, funkční analýzy a výsledky předchozích zkoušek.

10.4.4.1   Tímto doplňkovým prokazováním se musí schvalovacímu orgánu zejména uspokojivě prokázat začlenění mechanismu správného omezení točivého momentu do elektronické řídicí jednotky motoru (ECU).

10.4.5   Prokazovací zkouška systému mírného upozornění

10.4.5.1   Toto prokazování začíná, když byl v důsledku zjištění poruchy vybrané schvalovacím orgánem aktivován systém varování nebo příslušný „nepřetržitý“ režim systému varování.

10.4.5.2   Když je prověřována reakce systému na případ nedostatku činidla v nádrži, musí být motor v chodu, dokud hladina činidla nedosáhne hodnoty 2,5 % jmenovitého objemu nádrže nebo hodnoty deklarované výrobcem v souladu s bodem 6.3.1, při níž má účinkovat systém mírného upozornění.

10.4.5.2.1   Výrobce může se souhlasem schvalovacího orgánu simulovat nepřetržitý provoz odčerpáním činidla z nádrže buď za provozu motoru, nebo při zastaveném motoru.

10.4.5.3   Když se prověřuje reakce systému na jinou poruchu, než je nedostatek činidla v nádrži, motor musí být v provozu po příslušný počet hodin uvedený v tabulce 4.3 nebo, podle volby výrobce, dokud příslušné počitadlo nedosáhne hodnoty, při které je aktivován systém mírného upozornění.

10.4.5.4   Funkce systému mírného upozornění se považuje za prokázanou, pokud na konci každé prokazovací zkoušky provedené podle bodů 10.4.5.2 a 10.4.5.3 výrobce prokázal schvalovacímu orgánu, že elektronická řídicí jednotka motoru (ECU) aktivovala mechanismus omezení točivého momentu.

10.4.6   Prokazovací zkouška systému důrazného upozornění

10.4.6.1   Toto prokazování musí začít za stavu, kdy byl předtím aktivován systém mírného upozornění, a může být prováděno v návaznosti na zkoušky k prokázání funkce systému mírného upozornění.

10.4.6.2   Když se prověřuje reakce systému na nedostatek činidla v nádrži, musí být motor v provozu až do vyprázdnění nádrže nebo do okamžiku, kdy hladina činidla dosáhla úrovně nižší než 2,5 % jmenovitého objemu nádrže, při níž má podle prohlášení výrobce dojít k aktivaci systému důrazného upozornění.

10.4.6.2.1   Výrobce může se souhlasem schvalovacího orgánu simulovat nepřetržitý provoz odčerpáním činidla z nádrže buď za provozu motoru, nebo při zastaveném motoru.

10.4.6.3   Když se prověřuje reakce systému na jinou poruchu, než je nedostatek činidla v nádrži, musí být motor v provozu po příslušný počet hodin uvedený v tabulce 4.4 nebo, podle volby výrobce, dokud příslušné počitadlo nedosáhne hodnoty, při které je aktivován systém důrazného upozornění.

10.4.6.4   Funkce systému důrazného upozornění se považuje za prokázanou, pokud na konci každé prokazovací zkoušky provedené podle bodů 10.4.6.2 a 10.4.6.3 výrobce prokázal schvalovacímu orgánu, že byl aktivován mechanismus důrazného upozornění, o němž pojednává tento dodatek.

10.4.7   Jestliže si to výrobce přeje a schvalovací orgán souhlasí, může být prokázání mechanismů upozornění eventuálně provedeno na úplném nesilničním mobilním stroji v souladu s požadavky bodů 5.4 a 10.4.1.2 buď tak, že se nesilniční mobilní stroj přimontuje k vhodnému zkušebnímu stavu, nebo jízdou po zkušební dráze za kontrolovaných podmínek.

10.4.7.1   Nesilniční mobilní stroj musí být v provozu, dokud počitadlo přiřazené k vybrané poruše nedosáhne příslušného počtu hodin v provozu uvedeného v tabulce 4.4, popřípadě dokud není nádrž s činidlem prázdná nebo dokud nebylo dosaženo hladiny nižší než 2,5 % jmenovitého objemu nádrže, při které se má podle volby výrobce aktivovat systém důrazného upozornění.

11.   Popis mechanismů aktivace a deaktivace varování a upozornění operátora

11.1   K doplnění požadavků tohoto dodatku týkajících se mechanismů aktivace a deaktivace varování a upozornění stanoví tento oddíl 11 technické požadavky na zavedení těchto aktivačních a deaktivačních mechanismů.

11.2.   Mechanismy aktivace a deaktivace systému varování

11.2.1   Systém varování operátora se musí aktivovat, jakmile diagnostický chybový kód (DTC) přiřazený k NCM opravňující k jeho aktivaci dosáhne statusu stanoveného v tabulce 4.2.

Tabulka 4.2

Aktivace systému varování operátora

Druh poruchy

Status DTC pro aktivaci systému varování

Nedostatečná jakost činidla

potvrzený a aktivní

Přerušení dávkování

potvrzený a aktivní

Ventil recirkulace výfukových plynů (EGR) s omezenou funkcí

potvrzený a aktivní

Chybná funkce monitorovacího systému

potvrzený a aktivní

Mezní hodnota emisí NOx (pokud přichází v úvahu)

potvrzený a aktivní

11.2.2   Systém varování operátora se musí deaktivovat, jakmile diagnostický systém dospěje k závěru, že chybná funkce, které se toto varování týká, se již nevyskytuje, nebo jakmile jsou informace opravňující k jeho aktivaci, včetně diagnostických chybových kódů týkajících se těchto poruch, vymazány čtecím nástrojem.

11.2.2.1   Požadavky na vymazávání „informací o regulaci emisí NOx

11.2.2.1.1   Mazání/nulování „informací o regulaci emisí NOx“ čtecím nástrojem

Na vyžádání čtecího nástroje budou následující údaje z paměti počítače vymazány nebo přenastaveny na hodnotu stanovenou v tomto dodatku (viz tabulka 4.3).

Tabulka 4.3

Mazání/nulování „informací o regulaci emisí NOx“ čtecím nástrojem

Informace o regulaci emisí NOx

Smazatelné

Vynulovatelné

Všechny DTC

X

 

Hodnota odečtená z počitadla, které udává nejvyšší počet hodin provozu motoru

 

X

Počet hodin provozu motoru z počitadla (počitadel) NCD

 

X

11.2.2.1.2   Informace o regulaci emisí NOx nesmí být smazány v důsledku odpojení baterie/baterií nesilničního mobilního stroje.

11.2.2.1.3   Vymazání „informací o regulaci emisí NOx“ smí být prováděno výhradně při vypnutém motoru.

11.2.2.1.4   Při vymazávání „informací o regulaci emisí NOx“, včetně DTC, nesmí být stav žádného počitadla přiřazeného k těmto poruchám a uvedeného v tomto dodatku vymazán, nýbrž musí být znovu nastaven na hodnotu stanovenou v příslušné části tohoto dodatku.

11.3.   Mechanismus aktivace a deaktivace systému upozornění operátora

11.3.1   Systém upozornění operátora se musí aktivovat, je-li aktivní systém varování a počitadlo náležející druhu NCM opravňující k jejich aktivaci dosáhne hodnoty stanovené v tabulce 4.4.

11.3.2   Systém upozornění operátora se musí deaktivovat, jakmile systém již nedetekuje chybnou funkci opravňující k jeho aktivaci nebo jestliže informace o selháních opravňujících k jeho aktivaci, včetně DTC týkajících se NCM, byly čtecím nástrojem nebo nástrojem údržby vymazány.

11.3.3   Systémy varování a upozornění operátora se musí okamžitě aktivovat nebo případně deaktivovat v souladu s ustanoveními oddílu 6 po posouzení množství činidla v nádrži. V takovém případě aktivační nebo deaktivační mechanismy nesmí být závislé na statusu žádného přiřazeného DTC.

11.4   Mechanismus počitadel

11.4.1   Obecně

11.4.1.1   Aby systém splňoval požadavky tohoto dodatku, musí obsahovat alespoň čtyři počitadla k zaznamenávání počtu hodin, kdy byl motor v chodu a systém současně zjistil výskyt některé z těchto skutečností:

a)

nesprávná jakost činidla;

b)

přerušení dávkování činidla;

c)

omezení funkce ventilu recirkulace výfukových plynů (EGR);

d)

porucha systému NCD podle bodu 9.1 písm. b).

11.4.1.1.1   Výrobce případně může použít jedno nebo více počitadel ke sdružení poruch uvedených v bodu 11.4.1.1.

11.4.1.2   Každé z počitadel musí počítat až do nejvyšší hodnoty umožněné 2bajtovým počitadlem s rozlišením 1 hodina a napočítanou hodnotu uchovat, pokud nenastanou podmínky k tomu, aby počitadlo mohlo být vynulováno.

11.4.1.3   Výrobce může použít jediné počitadlo nebo více počítadel systému NCD. Jediné počitadlo může sečíst počet hodin dvou nebo více různých chybných funkcí, pro něž je toto počitadlo relevantní, aniž kterákoliv z nich dosáhla časového údaje, který toto jediné počitadlo ukazuje.

11.4.1.3.1   Rozhodne-li se výrobce použít více počitadel systému NCD, musí být systém schopen přidělit konkrétní počitadlo monitorovacího systému ke každé chybné funkci, pro kterou jsou v souladu s tímto dodatkem tyto druhy počitadel relevantní.

11.4.2   Princip mechanismu počitadel

11.4.2.1   Každé počitadlo musí fungovat takto:

11.4.2.1.1

Pokud počitadlo začíná od nuly, musí začít počítat v okamžiku, kdy je zjištěna chybná funkce přiřazená k tomuto počitadlu a příslušný diagnostický chybový kód (DTC) má status definovaný v tabulce 4.2.

11.4.2.1.2

Podle volby výrobce se v případě opakovaných poruch použije jedno z těchto ustanovení.

a)

Pokud dojde k monitorovací akci a chybná funkce, která původně počitadlo aktivovala, již není zjištěna nebo byla-li porucha vymazána čtecím nástrojem nebo nástrojem údržby, počitadlo se zastaví a uchová naměřenou hodnotu. Pokud se počitadlo zastaví při aktivovaném systému důrazného upozornění, musí stav počitadla setrvat na hodnotě definované v tabulce 4.4 nebo na hodnotě větší nebo rovné stavu počitadla pro důrazné upozornění minus 30 minut.

b)

Stav počitadla musí setrvat na hodnotě definované v tabulce 4.4 nebo na hodnotě větší nebo rovné stavu počitadla pro důrazné upozornění minus 30 minut.

11.4.2.1.3

V případě jediného počitadla monitorovacího systému bude toto počitadlo pokračovat v počítání, pokud je zjištěna NCM přiřazená tomuto počitadlu a za předpokladu, že příslušný diagnostický chybový kód (DTC) má status „potvrzený a aktivní“. Pokud není zjištěna žádná NCM, která by opravňovala k aktivaci počitadla, nebo pokud všechny poruchy přiřazené k tomuto počitadlu byly čtecím zařízením nebo nástrojem údržby vymazány, počitadlo se zastaví a uchová hodnotu uvedenou v bodu 11.4.2.1.2.

Tabulka 4.4

Počitadla a upozornění

 

Status DTC pro první aktivaci počitadla

Hodnota počitadla pro mírné upozornění

Hodnota počitadla pro důrazné upozornění

Zmrazená hodnota uchovávaná počitadlem

Počitadlo jakosti činidla

potvrzený a aktivní

≤ 10 hodin

≤ 20 hodin

≥ 90 % hodnoty počitadla pro důrazné upozornění

Počitadlo dávkování

potvrzený a aktivní

≤ 10 hodin

≤ 20 hodin

≥ 90 % hodnoty počitadla pro důrazné upozornění

Počitadlo ventilu recirkulace výfukových plynů (EGR)

potvrzený a aktivní

≤ 36 hodin

≤ 100 hodin

≥ 95 % hodnoty počitadla pro důrazné upozornění

Počitadlo monitorovacího systému

potvrzený a aktivní

≤ 36 hodin

≤ 100 hodin

≥ 95 % hodnoty počitadla pro důrazné upozornění

Mezní hodnota emisí NOx (pokud přichází v úvahu)

potvrzený a aktivní

≤ 10 hodin

≤ 20 hodin

≥ 90 % hodnoty počitadla pro důrazné upozornění

11.4.2.1.4

Počitadlo, jehož údaje byly zmrazeny, musí být vynulováno, jestliže monitorovací funkce přiřazené k tomuto počitadlu dokončí alespoň jeden monitorovací cyklus, aniž by zjistily chybnou funkci, a jestliže během 40 hodin chodu motoru od posledního zastavení počitadla není zjištěna žádná chybná funkce (viz obrázek 4.4).

11.4.2.1.5

Jestliže v době, kdy je hodnota na počitadle zmrazena (viz obrázek 4.4), je detekována chybná funkce přiřazená k tomuto počitadlu, počitadlo pokračuje v počítání od hodnoty, na které se předtím zastavilo.

12.   Znázornění mechanismu aktivace a deaktivace a mechanismu počitadla

12.1   Tento oddíl 12 znázorňuje mechanismy aktivace a deaktivace a mechanismy počitadla v některých typických případech. Obrázky a popisy uvedené v bodech 12.2, 12.3 a 12.4 jsou použity v tomto dodatku čistě pro ilustraci a nelze se na ně odvolávat jako na příklady požadavků tohoto nařízení nebo jako na konečné výsledky příslušných postupů. Hodiny na počitadle na obrázcích 4.6 a 4.7 se vztahují k maximálním hodnotám pro důrazné upozornění v tabulce 4.4. Pro zjednodušení není například v dané ukázce zmíněno, že systém varování zůstane aktivován také po dobu, kdy je aktivován systém upozornění.

Obrázek 4.4

Reaktivace a vynulování počitadla po době, po kterou jeho hodnota byla zmrazena

Image

12.2   Obrázek 4.5 znázorňuje funkci aktivačních a deaktivačních mechanismů při monitorování množství činidla ve čtyřech případech:

a)

případ použití 1: operátor nehledě na varování pokračuje v provozu nesilničního mobilního stroje, dokud není nesilniční mobilní stroj vyřazen z provozu;

b)

případ doplnění 1 („dostatečné“ doplnění): operátor doplní nádrž na činidlo tak, aby se dosáhlo množství přesahujícího prahovou hodnotu 10 %. Varování a upozornění se deaktivuje;

c)

případ doplnění 2 a 3 („nedostatečné“ doplnění): aktivuje se varovný systém. Intenzita varování závisí na množství činidla, které je k dispozici;

d)

případ doplnění 4 („velmi nedostatečné“ doplnění): okamžitě se aktivuje mírné upozornění.

Obrázek 4.5

Dostupnost činidla

Image

12.3   Obrázek 4.6 znázorňuje tři případy špatné jakosti činidla:

a)

případ použití 1: operátor nehledě na varování pokračuje v provozu nesilničního mobilního stroje, dokud není nesilniční mobilní stroj vyřazen z provozu;

b)

případ opravy 1 („špatná“ nebo „nepoctivá“ oprava): po vyřazení nesilničního mobilního stroje z provozu operátor změní jakost činidla, avšak brzy poté je opět nahradí činidlem nízké jakosti. Okamžitě se znovu aktivuje systém upozornění a nesilniční mobilní stroj je po 2 hodinách chodu motoru vyřazen z provozu;

c)

případ opravy 2 („správná“ oprava): po vyřazení nesilničního mobilního stroje z provozu operátor upraví jakost činidla. Avšak po určité době znovu doplní do nádrže činidlo špatné jakosti. Postupy varování, upozornění a počítání začínají znovu od nuly.

Obrázek 4.6

Plnění činidlem špatné jakosti

Image

12.4   Obrázek 4.7 znázorňuje tři případy poruchy systému dávkování močoviny. Tento obrázek také znázorňuje postup, který nastane v případě poruch monitorování popsaných v oddílu 9.

a)

případ použití 1: operátor nehledě na varování pokračuje v provozu nesilničního mobilního stroje, dokud není nesilniční mobilní stroj vyřazen z provozu;

b)

případ opravy 1 („správná“ oprava): po vyřazení nesilničního mobilního stroje z provozu operátor opraví systém dávkování. Avšak po určité době systém dávkování opět selže. Postupy varování, upozornění a počítání začínají znovu od nuly;

c)

případ opravy 2 („špatná“ oprava): v režimu mírného upozornění (snížení točivého momentu) operátor opraví systém dávkování. Brzy poté však systém dávkování opět selže. Okamžitě se znovu aktivuje systém mírného upozornění a počitadlo začne počítat od hodnoty, kterou ukazovalo v době opravy.

Obrázek 4.7

Porucha systému dávkování činidla

Image

13.   Prokazování nejnižší přípustné koncentrace činidla CDmin

13.1   Výrobce musí prokázat správnou hodnotu CDmin v průběhu EU schvalování typu provedením cyklu NRTC se startem za tepla u motorů podkategorie NRE-v-3, NRE-v-4, NRE-v-5 NRE-v-6 a příslušného cyklu NRSC u všech ostatních kategorií za použití činidla o koncentraci CDmin.

13.2   Zkoušce musí předcházet vhodný cyklus (cykly) NCD nebo stabilizační cyklus stanovený výrobcem umožňující přizpůsobit systém regulace emisí NOx s uzavřenou smyčkou jakosti činidla o koncentrací CDmin.

13.3   Emise znečišťujících látek, které z této zkoušky vyplynou, musí být nižší než mezní hodnota NOx stanovená v bodu 7.1.1.

Dodatek 2

Dodatečné technické požadavky týkající se opatření k regulaci emisí NOx pro motory kategorií IWP, IWA a RLR, včetně metody prokázání těchto strategií

1.   Úvod

Tento dodatek stanoví dodatečné požadavky k zajištění správné funkce opatření k regulaci emisí NOx pro motory kategorií IWP, IWA a RLR.

2.   Obecné požadavky

Požadavky dodatku 1 se použijí také pro motory v oblasti působnosti tohoto dodatku.

3.   Výjimky z požadavků dodatku 1

V zájmu bezpečnosti se upozornění vyžadovaná v dodatku 1 nepoužijí pro motory v oblasti působnosti tohoto dodatku. V důsledku toho se nepoužijí tyto body dodatku 1: 2.3.3.2, 5, 6.3, 7.3, 8.4, 9.4, 10.4 a 11.3.

4.   Požadavek ukládání incidentů, kdy je motor v provozu s nedostatečným vstřikováním činidla nebo nedostatečnou jakostí činidla.

4.1.   Protokol palubního počítače do energeticky nezávislé paměti počítače nebo do počitadel zaznamená celkový počet a dobu trvání všech incidentů, kdy je motor v provozu s nedostatečným vstřikováním činidla nebo nedostatečnou jakostí činidla, přičemž musí být zajištěno, že tyto informace nelze záměrně vymazat.

Vnitrostátní kontrolní orgány musí mít možnost číst tyto záznamy čtecím nástrojem.

4.2.   Doba trvání incidentu zaznamenaného v paměti podle bodu 4.1 začíná, když je nádrž na činidlo prázdná, tj. když dávkovací systém nemůže čerpat z nádrže další činidlo, nebo při jakékoliv hladině nižší než 2,5 % jejího plného jmenovitého objemu podle volby výrobce.

4.3.   Pro incidenty neuvedené v bodu 4.1.1 doba trvání incidentu zaznamenaného v paměti podle bodu 4.1 začíná, jakmile příslušné počitadlo dosáhne hodnoty pro důrazné upozornění v tabulce 4.4 dodatku 1.

4.4.   Doba trvání incidentu zaznamenaného v paměti podle bodu 4.1 končí, jakmile je odstraněn.

4.5.   Při provádění prokazování podle požadavků oddílu 10 dodatku 1 se prokázání systému důrazného upozornění podle bodu 10.1 písm. c) uvedeného dodatku a odpovídající tabulky 4.1 nahradí prokázáním uložení incidentu, kdy je motor v provozu s nedostatečným vstřikováním činidla nebo nedostatečnou jakostí činidla.

V tomto případě se použijí požadavky bodu 10.4.1 dodatku 1 a výrobci se se souhlasem schvalovacího orgánu povolí urychlit zkoušku tím, že nasimuluje dosažení určitého počtu hodin provozu motoru.

Dodatek 3

Dodatečné technické požadavky týkající se opatření k regulaci emisí NOx pro motory kategorie RLL

1.   Úvod

Tento dodatek stanoví dodatečné požadavky k zajištění správné funkce opatření k regulaci emisí NOx pro motory kategorie RLL. Obsahuje požadavky na motory, jež ke snížení emisí používají činidlo. EU schválení typu je podmíněno uplatňováním příslušných ustanovení o pokynech pro operátora, montážní dokumentaci, systému varování operátora, které jsou uvedeny v tomto dodatku.

2.   Požadované informace

2.1.   Výrobce poskytne informace, které plně popisují funkční provozní vlastnosti opatření k regulaci emisí NOx podle bodu 1.5 části A přílohy I prováděcího nařízení (EU) 2017/656.

2.2.   Pokud systém regulace emisí vyžaduje činidlo, musí výrobce v informačním dokumentu stanoveném v dodatku 3 přílohy I prováděcího nařízení (EU) 2017/656 uvést vlastnosti tohoto činidla, a to včetně druhu činidla, informací o koncentraci, je-li činidlo roztokem, provozních teplotních podmínek a odkazu na mezinárodní normy, pokud jde o složení a kvalitu.

3.   Dostupnost činidla a systém varování operátora

Pokud je použito činidlo, je EU schválení typu podmíněno tím, že budou poskytnuty indikátory nebo jiné vhodné prostředky podle konfigurace nesilničních mobilních strojů informující operátora o následujícím:

a)

množství činidla, které zbývá v nádrži na činidlo, a pomocí doplňkového zvláštního signálu o tom, pokud zbývající činidlo dosahuje méně než 10 % plné kapacity nádrže;

b)

je-li nádrž na činidlo zcela nebo téměř prázdná;

c)

pokud činidlo v nádrži podle namontovaného měřicího zařízení neodpovídá vlastnostem deklarovaným a zaznamenaným v informačním dokumentu stanoveném v dodatku 3 k příloze I prováděcího nařízení (EU) 2017/656;

d)

pokud bylo dávkování činidla přerušeno, v jiných případech než těch, kdy k tomu došlo ze strany řídicí jednotky motoru nebo regulátoru dávkování, v reakci na provozní podmínky motoru, kdy není dávkování požadováno, a to za předpokladu, že je schvalovací orgán o těchto provozních podmínkách informován.

4.   Jakost činidla

Podle rozhodnutí výrobce musí být požadavky na soulad činidla s deklarovanými vlastnostmi a příslušnými dovolenými odchylkami emisí NOx splněny pomocí jednoho z následujících prostředků:

a)

přímým prostředkem, například použitím čidla kvality činidla;

b)

nepřímým prostředkem, například použitím čidla NOx ve výfukovém systému ke zhodnocení účinnosti činidla;

c)

jinými prostředky, pokud je jejich účinnost alespoň rovnocenná účinnosti při použití prostředků podle písmen a) nebo b) a jsou zachovány hlavní požadavky tohoto oddílu 4.

Dodatek 4

Technické požadavky týkající se opatření k regulaci emisí pevných znečišťujících látek, včetně metody prokázání těchto opatření

1.   Úvod

Tato příloha stanoví požadavky k zajištění správné funkce opatření k regulaci emisí pevných částic.

2.   Obecné požadavky

Motor musí být vybaven diagnostickým systémem regulace emisí pevných částic (PCD), který dokáže určit chybné funkce systému následného zpracování pevných částic, o nichž pojednává tato příloha. Každý motor, na který se vztahuje tento oddíl 2, musí být navržen, vyroben a namontován tak, aby umožnil splnit tyto požadavky po celou dobu běžné životnosti motoru a za obvyklých podmínek používání. K dosažení tohoto cíle je přípustné, aby motory, které byly používány delší dobu, než je doba životnosti emisních vlastností uvedená v příloze V nařízení (EU) 2016/1628, vykazovaly určité zhoršení funkce a citlivosti diagnostického systému regulace emisí pevných částic.

2.1.   Požadované informace

2.1.1   Pokud systém regulace emisí vyžaduje činidlo, např. palivový katalyzátor, musí výrobce v informačním dokumentu stanoveném v dodatku 3 přílohy I prováděcího nařízení (EU) 2017/656 uvést vlastnosti tohoto činidla, a to včetně druhu činidla, informací o koncentraci, pokud je činidlo roztokem, provozních teplotních podmínek a odkazu na mezinárodní normy, pokud jde o složení a kvalitu.

2.1.2   Podrobné písemné informace s úplným popisem funkčních vlastností systému varování operátora v oddílu 4 se předloží při EU schvalování typu schvalovacímu orgánu.

2.1.3   Výrobce poskytne instalační dokumentaci, která při použití výrobcem původního zařízení zajistí, že motor, včetně systému regulace emisí, který je součástí schváleného typu motoru nebo rodiny motorů, je-li v nesilničním mobilním stroji instalován, bude ve spojení s nezbytnými částmi strojního zařízení fungovat způsobem vyhovujícím požadavkům této přílohy. Tato dokumentace musí obsahovat podrobné technické požadavky a ustanovení týkající se motoru (software, hardware a komunikace), jichž je zapotřebí ke správnému namontování motoru v nesilničním mobilním stroji.

2.2.   Provozní podmínky

2.2.1   Systém PCD musí být provozuschopný za následujících podmínek:

a)

okolní teploty v rozmezí 266 K až 308 K (– 7 °C až 35 °C);

b)

nadmořská výška do 1 600 m;

c)

teplota chladicí kapaliny vyšší než 343 K (70 oC).

2.3.   Požadavky na diagnostiku

2.3.1   Systém PCD musí být schopen určit chybné funkce regulace emisí pevných částic (PCM), o nichž pojednává tato příloha, prostřednictvím diagnostických chybových kódů (DTC) uložených v paměti počítače a musí být schopen předat tyto informace mimo vozidlo.

2.3.2   Požadavky na záznam diagnostických chybových kódů (DTC)

2.3.2.1   Systém PCD musí zaznamenávat DTC pro každou jednotlivou PCM.

2.3.2.2   Zda existuje zjistitelná chybná funkce musí systém PCD vyhodnotit v dobách provozu motoru uvedených v tabulce 4.5. V tomto okamžiku se uloží „potvrzený a aktivní“ DTC a aktivuje se varovný systém podle oddílu 4.

2.3.2.3   V případech, kdy je zapotřebí doba provozu delší než doba uvedená v tabulce 1 k tomu, aby monitorovací funkce mohly přesně zjistit a potvrdit PCM (např. monitorovací zařízení fungující na základě statistických modelů nebo spotřeby kapalin v nesilničním mobilním stroji), může schvalovací orgán k monitorování povolit delší období, je-li taková potřeba odůvodněna výrobcem (např. technickými podklady, výsledky pokusů, interní praxí atd.).

Tabulka 4.5

Typy monitorovacích funkcí a odpovídající doba, během které se ukládá „potvrzený a aktivní“ DTC

Typ monitorovací funkce

Akumulovaná doba provozu, během které se ukládá „potvrzený a aktivní“ DTC

Odstranění systému následného zpracování pevných částic

60 minut provozu motoru mimo volnoběh

Ztráta funkce systému následného zpracování pevných částic

240 minut provozu motoru mimo volnoběh

Poruchy systému PCD

60 minut provozu motoru

2.3.3   Požadavky na vymazávání diagnostických chybových kódů (DTC):

a)

systém PCD nesmí DTC z paměti počítače vymazat, dokud nebyla odstraněna porucha, která se k danému DTC vztahuje;

b)

systém PCD může všechny DTC vymazat na základě požadavku proprietárního čtecího nástroje nebo nástroje údržby, který na žádost poskytne výrobce motoru, nebo pomocí výrobcem poskytnutého přístupového kódu;

c)

záznam incidentů provozu s „potvrzeným a aktivním“ DTC, které se ukládají v energeticky nezávislé paměti vyžadované v bodu 5.2, se nesmí vymazat.

2.3.4   Systém PCD nesmí být naprogramován nebo konstruován tak, aby se kdykoli po celou dobu životnosti motoru zcela nebo částečně deaktivoval na základě stáří nesilničního mobilního stroje, a nesmí obsahovat ani algoritmus nebo strategii určenou k průběžnému snižování účinnosti systému PCD.

2.3.5   Všechny přeprogramovatelné počítačové kódy nebo provozní parametry systému PCD musí být odolné vůči nedovoleným zásahům.

2.3.6   Rodina motorů s PCD

Výrobce zodpovídá za stanovení členů rodiny motorů s PCD. Vytváření skupin motorů v rámci rodiny motorů s PCD se provede na základě osvědčeného technického úsudku a musí být schváleno schvalovacím orgánem.

Motory, které nepatří do stejné rodiny motorů, mohou přesto patřit do stejné rodiny motorů s PCD.

2.3.6.1   Parametry vymezující rodinu motorů s PCD

Rodina motorů s PCD je charakterizována základními konstrukčními parametry, které musí být pro motory této rodiny společné.

Aby mohly být motory pokládány za motory z téže rodiny motorů s PCD, musí si být podobné v následujících základních parametrech:

a)

princip činnosti systému následného zpracování pevných částic (např. mechanický, aerodynamický, difúzní, inerční, periodicky se regenerující, nepřetržitě se regenerující, atd.);

b)

metody monitorování systému PCD;

c)

kritéria monitorování systému PCD;

d)

parametry monitorování (např. frekvence).

Tyto podobnosti musí být prokázány výrobcem pomocí vhodných technických postupů prokazování nebo jinými vhodnými postupy a musí být schváleny schvalovacím orgánem.

Výrobce může schvalovací orgán požádat o schválení drobných odchylek v metodách monitorování/diagnostiky systému monitorování PCD kvůli odlišnostem v konfiguraci motoru, pokud jsou tyto metody výrobcem považovány za podobné a liší se pouze tak, aby odpovídaly zvláštním charakteristikám posuzovaných součástí (například velikost, průtok výfukových plynů atd.); nebo je jejich podobnost stanovena na základě osvědčeného technického úsudku.

3.   Požadavky na údržbu

3.1   Výrobce poskytne nebo zajistí, aby byly všem konečným uživatelům nových motorů nebo strojů poskytnuty písemné pokyny o systému regulace emisí a jeho správném fungování, jak je vyžadováno v příloze XV.

4.   Systém varování operátora

4.1   Součástí nesilničního mobilního stroje musí být systém varování operátora používající vizuální varovné signály.

4.2   Systém varování operátora může být tvořen jedním nebo více světelnými kontrolkami nebo může zobrazovat stručné zprávy.

K jejich zobrazení smí být používán stejný systém jako k zobrazování jiné údržby nebo NCD.

Systém varování musí sdělit, že je nutná urychlená oprava. Je-li součástí systému varování také zobrazování hlášení, zobrazí se zpráva ukazující důvod varování (například „čidlo odpojeno“ nebo „kritická porucha regulace emisí“).

4.3   Výrobce může do systému varování zahrnout také zvukový prvek. Operátor smí zvuková varování zrušit.

4.4   Systém varování operátora se musí aktivovat podle ustanovení v bodu 2.3.2.2.

4.5   Systém varování operátora se musí deaktivovat, jestliže pominuly podmínky pro jeho aktivaci. Systém varování operátora se nesmí automaticky deaktivovat, aniž by byly odstraněny důvody pro jeho aktivaci.

4.6   Systém varování může být dočasně přerušen jinými varovnými signály, které zprostředkovávají důležité zprávy týkající se bezpečnosti.

4.7   V žádosti o EU schválení typu podle nařízení (EU) 2016/1628 musí výrobce prokázat funkci systému varování operátora způsobem stanoveným v oddíle 9.

5.   Systém pro ukládání informací o aktivaci systému varování operátora

5.1   Systém PCD musí obsahovat energeticky nezávislou paměť počítače nebo počitadla umožňující ukládat incidenty, kdy je motor v provozu s „potvrzeným a aktivním“ DTC, takovým způsobem, aby bylo zajištěno, že tyto informace nelze záměrně smazat.

5.2   Systém PCD ukládá v energeticky nezávislé paměti celkový počet a dobu trvání všech incidentů, kdy je motor v provozu s „potvrzeným a aktivním“ DTC, pokud byl systém varování operátora aktivní po dobu 20 hodin provozu motoru nebo po kratší dobu dle volby výrobce.

5.2   Vnitrostátní kontrolní orgány musí mít možnost číst tyto záznamy čtecím nástrojem.

6.   Monitorování odstranění systému následného zpracování pevných částic

6.1   PCD musí zjistit úplné odstranění systému následného zpracování pevných částic, včetně odstranění případných čidel používaných k monitorování, aktivaci, deaktivaci nebo úpravu jeho činnosti.

7.   Dodatečné požadavky v případě systému následného zpracování pevných částic využívajícího činidlo (např. palivový katalyzátor)

7.1   V případě potvrzeného a aktivního DTC pro odstranění systému následného zpracování pevných částic nebo ztrátu funkce systému následného zpracování pevných částic musí být dávkování činidla automaticky přerušeno. Dávkování začne znovu, jakmile již DTC není aktivní.

7.2   Systém varování se aktivuje, pokud hladina činidla v nádrži na aditiva klesne po minimální hodnotu stanovenou výrobcem.

8.   Poruchy monitorování, jež mohou být důsledkem nedovolených zásahů

8.1   Kromě monitorování systému následného zpracování pevných částic musí být monitorovány tyto poruchy, jelikož mohou být důsledkem nedovolených zásahů:

a)

ztráta funkce systému následného zpracování pevných částic;

b)

poruchy systému PCD popsané v bodě 8.3.

8.2   Monitorování ztráty funkce systému následného zpracování pevných částic.

PCD musí zjistit úplné odstranění nosiče systému následného zpracování pevných částic („empty can“). V tomto případě jsou stále přítomny plášť a čidla systému následného zpracování používaná k aktivaci, deaktivaci nebo úpravě jeho činnosti.

8.3   Monitorování poruch systému PCD

8.3.1   U systému PCD se sleduje výskyt elektrických poruch a odstranění nebo deaktivace každého čidla nebo ovládacího prvku, v jejichž důsledku systém neprovádí diagnostiku ostatních závad uvedených v bodech 6.1 a 8.1 písm. a) (monitorování součástí).

Čidla, která ovlivňují diagnostické schopnosti, jsou mimo jiné ta, která přímo měří rozdíly tlaku v rámci systému následného zpracování pevných částic, a čidla teploty výfukových plynů pro řízení regenerace systému následného zpracování pevných částic.

8.3.2   Pokud porucha, odstranění nebo deaktivace jednoho čidla nebo ovládacího prvku systému PCD nebrání tomu, aby byly v požadované době diagnostikovány poruchy uvedené v bodu 6.1 a bodu 8.1 písm. a) (redundantní systém), nebude vyžadována aktivace systému varování a uložení informací o aktivaci systému varování operátora, pokud nebudou potvrzeny a aktivní poruchy dalšího čidla nebo ovládacího prvku.

9.   Požadavky na prokazování

9.1   Obecně

Shoda s požadavky tohoto dodatku se provádí prokázáním aktivace systému varování v průběhu EU schvalování typu, jak je znázorněno v tabulce 4.6 a uvedeno v tomto oddílu 9.

Tabulka 4.6

Znázornění obsahu postupu při prokazování podle ustanovení v bodu 9.3

Mechanismus

Prokazované prvky

Aktivace systému varování uvedená v bodu 4.4

2 zkoušky aktivace (včetně ztráty funkce systému následného zpracování pevných částic)

případně další prokazované prvky

9.2   Rodiny motorů a rodiny motorů s PCD

9.2.1   V případech, kdy motory z některé rodiny motorů patří do rodiny motorů s PCD, která již získala EU schválení typu podle obrázku 4.8, se shodnost této rodiny motorů považuje za prokázanou bez dalších zkoušek, pokud výrobce schvalovacímu orgánu prokáže, že monitorovací systémy nezbytné ke splnění požadavků tohoto dodatku jsou v rámci posuzované rodiny motorů a rodiny motorů s PCD obdobné.

Obrázek 4.8

Dříve prokázaná shodnost rodiny motorů s PCD

Image

9.3   Prokázání aktivace systému varování

9.3.1   Shodnost aktivace systému varování se prokazuje vykonáním dvou zkoušek: ztráty funkce systému následného zpracování pevných částic a jednou kategorií poruchy uvedené v bodě 6 nebo bodě 8.3 této přílohy.

9.3.2   Výběr poruch ke zkoušce

9.3.2.1   Výrobce poskytne schvalovacímu orgánu seznam takových možných poruch.

9.3.2.2   Porucha, která má být předmětem zkoušky, musí být vybrána schvalovacím orgánem z tohoto seznamu uvedeného v bodu 9.3.2.1.

9.3.3   Prokázání

9.3.3.1   Pro účely tohoto prokázání se provede samostatná zkouška ztráty funkce systému následného zpracování pevných částic stanovená v bodě 8.2 a zkouška poruch uvedených v bodech 6 a 8.3. Ztráta funkce systému následného zpracování pevných částic se způsobí úplným odstraněním nosiče z pláště systému následného zpracování pevných částic.

9.3.3.2   Během zkoušky se nesmí vyskytnout jiná porucha, než je ta, které se zkouška týká.

9.3.3.3   Před zahájením zkoušky musí být vymazány všechny DTC.

9.3.3.4   Na žádost výrobce a se souhlasem schvalovacího orgánu mohou být poruchy, kterých se zkouška týká, simulovány.

9.3.3.5   Zjišťování poruch

9.3.3.5.1   Systém PCD musí zareagovat na vyvolání poruchy, kterou schvalovací orgán vybral jako vhodnou v souladu s ustanoveními tohoto dodatku. To se považuje za prokázané, dojde-li k aktivaci během počtu po sobě jdoucích zkušebních cyklů PCD podle tabulky 4.7.

Jestliže bylo v popisu monitorování uvedeno a schvalovacím orgánem schváleno, že konkrétní monitorovací funkce vyžaduje k provedení úplného monitorování více zkušebních cyklů PCD, než je uvedeno v tabulce 4.7, může být počet zkušebních cyklů PCD zvýšen až o 50 %.

Během prokazovací zkoušky může být každý jednotlivý zkušební cyklus PCD oddělen vypnutím motoru. Délka vypnutí do dalšího nastartování musí brát v úvahu monitorování, ke kterému může dojít po vypnutí motoru, a veškeré podmínky, které musí být splněny, aby proběhlo monitorování při následujícím nastartování.

Tabulka 4.7

Typy monitorovacích funkcí a odpovídající počet zkušebních cyklů PCD, během kterých se ukládá „potvrzený a aktivní“ DTC

Typ monitorovací funkce

Počet zkušebních cyklů PCD, během kterých se ukládá „potvrzený a aktivní“ DTC

Odstranění systému následného zpracování pevných částic

2

Ztráta funkce systému následného zpracování pevných částic

8

Poruchy systému PCD

2

9.3.3.6   Zkušební cyklus PCD

9.3.3.6.1   Zkušební cyklus PCD, který pro účely tohoto oddílu 9 slouží k prokázání správné funkce systému monitorování následného zpracování pevných částic, je cyklus NRTC se startem za tepla pro motory podkategorie NRE-v-3, NRE-v-4, NRE-v-5 NRE-v-6 a příslušný NRSC pro všechny ostatní kategorie.

9.3.3.6.2   Na žádost výrobce a se schválením schvalovacího orgánu může být pro určitou monitorovací funkci použit jiný zkušební cyklus PCD (např. jiný než NTRC nebo NRSC). Žádost musí obsahovat prvky (odborná zdůvodnění, simulace, výsledky zkoušek atd.) jimiž se prokazuje, že:

a)

výsledkem požadovaného zkušebního cyklu bude monitorovací funkce, která se bude používat ve skutečném provozu vozidla, a

b)

příslušný zkušební cyklus PCD uvedený v bodu 9.3.3.6.1 je pro uvažované monitorování méně vhodný.

9.3.3.7   Konfigurace pro prokázání aktivace systému varování

9.3.3.7.1   Prokázání aktivace systému upozornění se provádí zkouškami na motorovém zkušebním stavu.

9.3.3.7.2   Veškeré součásti nebo subsystémy, které nejsou fyzicky namontovány na motoru, jako jsou například, nikoli však výhradně, čidla teploty prostředí, čidla hladiny a systémy varování a upozornění operátora, které jsou k prokázání nezbytné, musí být pro tento účel připojeny k motoru nebo musí být simulovány způsobem uspokojivým pro schvalovací orgán.

9.3.3.7.3   Jestliže si to výrobce přeje a schvalovací orgán souhlasí, mohou být prokazovací zkoušky provedeny, aniž je dotčen bod 9.3.3.7.1, na úplném nesilničním mobilním stroji nebo zařízení buď tak, že se nesilniční mobilní stroj přimontuje k vhodnému zkušebnímu stavu, nebo jízdou po zkušební dráze za kontrolovaných podmínek.

9.3.4   Aktivace systému varování se považuje za prokázanou, pokud na konci každé prokazovací zkoušky provedené podle bodu 9.3.3 došlo ke správné aktivaci systému varování a pro vybranou poruchu byl dosažen status „potvrzený a aktivní“ DTC.

9.3.5   Pokud je zkoušce prokázání ztráty funkce systému následného zpracování pevných částic nebo odstranění systému následného zpracování pevných částic podroben systému následného zpracování pevných částic, který používá činidlo, musí se rovněž potvrdit, že bylo dávkování činidla přerušeno.


PŘÍLOHA V

Měření a zkoušky týkající se rozsahu spojeného s nesilničním zkušebním cyklem v ustáleném stavu

1.   Obecné požadavky

Tato příloha se použije pro elektronicky řízené motory kategorií NRE, NRG, IWP, IWA a RLR splňující mezní hodnoty emisí „etapy V“, které jsou stanoveny v příloze II nařízení (EU) 2016/1628, a využívající elektronické řízení, které umožňuje stanovit množství i časování vstřiku paliva, nebo využívajících elektronického řízení, které umožňuje aktivovat, deaktivovat nebo upravovat systém regulace emisí sloužící ke snižování emisí NOx.

Tato příloha stanoví technické požadavky týkající se rozsahu souvisejícího s příslušným NRSC, v jehož rámci je kontrolována hodnota, o kterou smějí emise překročit mezní hodnoty emisí stanovené v příloze II.

Je-li motor zkoušen způsobem stanoveným ve zkušebních požadavcích oddílu 4, nesmí vzorky emisí odebrané v jakémkoli náhodně vybraném bodě v rámci příslušného kontrolního rozsahu stanoveného v oddílu 2 překročit příslušné mezní hodnoty emisí v příloze II nařízení (EU) 2016/1628 vynásobené faktorem 2,0.

Oddíl 3 stanoví, jak technická zkušebna vybírá dodatečné body měření v kontrolním rozsahu v průběhu zkoušky emisí na zkušebním stavu za účelem prokázání, že požadavky tohoto oddílu 1 byly splněny.

Výrobce může požádat, aby technická zkušebna při prokázání podle oddílu 3 vyňala provozní body z kteréhokoli kontrolního rozsahu stanoveného v oddílu 2. Technická zkušebna může udělit tuto výjimku, jestliže výrobce může prokázat, že motor není nikdy schopen provozu v takových bodech při jeho použití v jakékoli kombinaci nesilničního mobilního stroje.

V návodu k montáži, který výrobci původního zařízení poskytl výrobce podle přílohy XIV, musí být uvedeny horní a spodní mez příslušného kontrolního rozsahu, a prohlášení, které objasní, že výrobce původního zařízení nesmí motor nainstalovat způsobem, který motor omezuje tak, aby trvale pracoval při rychlosti a zátěžových bodech mimo zkušební rozsah pro křivku točivého momentu odpovídající schválenému typu motoru nebo rodině motorů.

2.   Kontrolní rozsah motoru

Příslušný kontrolní rozsah pro provedení zkoušky motoru je rozsah definovaný v tomto oddílu 2, který odpovídá příslušnému NRSC pro zkoušený motor.

2.1.   Kontrolní rozsah pro motory zkoušené na NRSC, cyklus C1

Tyto motory pracují s proměnnými otáčkami a proměnným zatížením. V závislosti na (pod)kategorii a provozních otáčkách motoru se použijí odlišné výjimky týkající se kontrolního rozsahu.

2.1.1.   Motory s proměnnými otáčkami kategorie NRE s maximálním netto výkonem ≥ 19 kW, motory s proměnnými otáčkami kategorie IWA s maximálním netto výkonem ≥ 300 kW, motory s proměnnými otáčkami kategorie RLR a motory s proměnnými otáčkami kategorie NRG.

Kontrolní rozsah (viz obrázek 5.1) je definován takto

horní mez točivého momentu: křivka točivého momentu při plném zatížení;

rozsah otáček: od otáček A do n hi;

kde:

otáčky A = n lo + 0,15 × (n hin lo);

n hi

=

vysoké otáčky [viz čl. 1 odst. 12];

n lo

=

nízké otáčky [viz čl. 1 odst. 13].

Ze zkoušek se vyloučí následující provozní podmínky motoru:

a)

body nižší než 30 % maximálního točivého momentu;

b)

body nižší než 30 % maximálního netto výkonu.

Jsou-li změřené otáčky motoru A v rozmezí ± 3 % otáček motoru deklarovaných výrobcem, použijí se deklarované otáčky motoru. Jestliže kterékoliv zkušební otáčky tuto dovolenou odchylku překračují, použijí se změřené otáčky motoru.

Mezilehlé zkušební body v kontrolním rozsahu se definují takto:

 

% točivého momentu = % maximálního točivého momentu

 

Formula;

kde: n100 % jsou 100 % otáčky pro odpovídající zkušební cyklus.

Obrázek 5.1

Kontrolní rozsah pro motory s proměnnými otáčkami kategorie NRE s maximálním netto výkonem ≥ 19 kW, motory s proměnnými otáčkami kategorie IWA s maximálním netto výkonem ≥ 300 kW a motory s proměnnými otáčkami kategorie NRG

Image

2.1.2.   Motory s proměnnými otáčkami kategorie NRE s maximálním netto výkonem < 19 kW a motory s proměnnými otáčkami kategorie IWA s maximálním netto výkonem < 300 kW

Použije se kontrolní rozsah uvedený v bodě 2.1.1, avšak s dodatečným vyloučením provozních podmínek motoru uvedených v tomto bodě a znázorněných na obrázcích 5.2 a 5.3.

a)

pouze pro pevné částice, pokud jsou otáčky C nižší než 2 400 ot./min, body napravo od čáry vytvořené spojením bodů 30 % maximálního točivého momentu nebo 30 % maximálního netto výkonu nebo pod ní, podle toho, která z těchto hodnot je větší, při otáčkách B a 70 % maximálního netto výkonu při vysokých otáčkách;

b)

pouze pro pevné částice, pokud jsou otáčky C 2 400 ot./min nebo vyšší, body napravo od čáry vytvořené spojením bodů 30 % maximálního točivého momentu nebo 30 % maximálního netto výkonu, podle toho, která z těchto hodnot je větší, při otáčkách B, 50 % maximálního netto výkonu při 2 400 ot./min a 70 % maximálního netto výkonu při vysokých otáčkách;

kde:

 

otáčky B = n lo + 0,5 × (n hin lo);

 

otáčky C = n lo + 0,75 × (n hin lo);

n hi

=

vysoké otáčky [viz čl. 1 odst. 12];

n lo

=

nízké otáčky [viz čl. 1 odst. 13].

Jsou-li změřené otáčky motoru A, B a C v rozmezí ±3 % otáček motoru deklarovaných výrobcem, použijí se deklarované otáčky motoru. Jestliže kterékoliv zkušební otáčky tuto dovolenou odchylku překračují, použijí se změřené otáčky motoru.

Obrázek 5.2

Kontrolní rozsah pro motory s proměnnými otáčkami kategorie NRE s maximálním netto výkonem < 19 kW, motory s proměnnými otáčkami kategorie IWA s maximálním netto výkonem < 300 kW a otáčkami C < 2 400 ot./min

Image

Legenda:

1

Kontrolní rozsah motoru

2

Výjimka pro všechny emise

3

Výjimka pro PM

a

% maximálního netto výkonu

b

% maximálního točivého momentu

Obrázek 5.3

Kontrolní rozsah pro motory s proměnnými otáčkami kategorie NRE s maximálním netto výkonem < 19 kW a motory s proměnnými otáčkami kategorie IWA s maximálním netto výkonem < 300 kW a otáčkami C ≥ 2 400 ot./min

Image

Legenda:

1

Kontrolní rozsah motoru

2

Výjimka pro všechny emise

3

Výjimka pro PM

a

Procenta maximálního netto výkonu

b

Procenta maximálního točivého momentu

2.2.   Kontrolní rozsah pro motory zkoušené na NRSC, cykly D2, E2 a G2

Tyto motory se provozují hlavně velmi blízko jejich konstrukčním provozním otáčkám, a proto je kontrolní rozsah definován takto:

otáčky

:

100 %

Rozsah točivého momentu

:

od 50 % do točivého momentu odpovídajícího maximálnímu výkonu.

2.3.   Kontrolní rozsah pro motory zkoušené na NRSC, cyklus E3

Tyto motory se provozují hlavně mírně nad a mírně pod křivkou šroubu s pevným stoupáním. Kontrolní rozsah se týká křivky šroubu a má exponenty matematických rovnic definujících hranice kontrolního rozsahu. Kontrolní rozsah je definován takto:

Spodní mez otáček

:

0,7 × n 100 %

Křivka horní meze

:

% výkonu = 100 × ( % otáček/90)3,5;

Křivka spodní meze

:

% výkonu = 70 × ( % otáček/100)2,5;

Horní mez točivého momentu

:

Křivka výkonu při plném zatížení

Horní mez otáček

:

Maximální otáčky, které umožňuje regulátor

kde:

 

% výkonu znamená % maximálního netto výkonu;

 

% otáček znamená % n100 %

 

n100 % znamená 100 % otáčky pro odpovídající zkušební cyklus.

Obrázek 5.4

Kontrolní rozsah pro motory zkoušené na NRSC, cyklus E3

Image

Legenda:

1

Spodní mez otáček

2

Křivka horní meze

3

Křivka spodní meze

4

Křivka výkonu při plném zatížení

5

Křivka maximálních otáček regulátoru

6

Kontrolní rozsah motoru

3.   Požadavky na prokazování

Technická zkušebna vybere ke zkoušení náhodně vybrané hodnoty zatížení a otáček v rámci kontrolního rozsahu. Pro motory podléhající bodu 2.1 se vyberou až tři body. Pro motory podléhající bodu 2.2 se vybere jeden bod. Pro motory podléhající bodu 2.3 nebo 2.4 se vyberou až dva body. Technická zkušebna rovněž namátkově určí pořadí zkušebních bodů. Zkouška musí být provedena v souladu s hlavními požadavky NRSC, ale každý zkušební bod se musí hodnotit samostatně.

4.   Zkušební požadavky

Zkouška se provede bezprostředně po NRSC s diskrétním režimem následujícím způsobem:

a)

zkouška se provede bezprostředně po NRSC s diskrétním režimem, jak je popsáno v písm. a) až e) bodu 7.8.1.2 přílohy VI, avšak před provedením postupů po zkoušce (písm. f), nebo po zkoušce s cykly s lineárními přechody mezi režimy („RMC“) uvedené v písm. a) až d) bodu 7.8.2.3 přílohy VI, avšak před provedením postupů po zkoušce (písm. e), podle situace;

b)

zkoušky se provedou podle požadavků v písm. b) až e) bodu 7.8.1.2 přílohy VI metodou s více filtry (jeden filtr na každý zkušební bod) v každém ze zkušebních bodů zvolených podle oddílu 3;

c)

pro každý zkušební bod se vypočte specifická hodnota emisí (v g/kWh nebo #/kWh, podle situace);

d)

hodnoty emisí mohou být vypočteny na základě hmotnosti s využitím oddílu 2 přílohy VII nebo na molárním základě s využitím oddílu 3 přílohy VII, avšak musí být v souladu s metodou použitou pro zkoušku NRSC s diskrétním režimem nebo pro zkoušku RMC;

e)

pro účely sumačních výpočtů u plynů a případně PN se hodnota Nmode v rovnici (7-63) nastaví na hodnotu 1 a použije se váhový faktor 1;

f)

pro výpočty pevných částic se použije metoda s více filtry; pro sumační výpočty se hodnota Nmode v rovnici (7-64) nastaví na hodnotu 1 a použije se váhový faktor 1.


PŘÍLOHA VI

Provádění zkoušek emisí a požadavky na měřicí zařízení

1.   Úvod

Tato příloha popisuje způsob stanovení emisí plynných znečišťujících látek a emisí pevných znečisťujících částic z motoru určeného ke zkouškám a specifikace týkající se měřicího zařízení. Počínaje oddílem 6 odpovídá číslování této přílohy číslování celosvětového technického předpisu NRMM gtr 11 a přílohy 4B předpisu OSN 96-03. Nicméně některé body celosvětového technického předpisu NRMM gtr 11 nejsou v této příloze zapotřebí, nebo jsou upraveny podle technického pokroku.

2.   Obecný přehled

Tato příloha obsahuje následující technická ustanovení nezbytná k provádění zkoušek emisí. Dodatečná ustanovení jsou uvedena v bodě 3.

Oddíl 5: Provozní požadavky, včetně stanovení zkušebních rychlostí

Oddíl 6: Zkušební podmínky, včetně metody pro započtení emisí z klikové skříně a metody pro určení a započtení kontinuální a občasné regenerace systémů následného zpracování výfukových plynů

Oddíl 7: Zkušební postupy, včetně mapování motorů, generování zkušebního cyklu a postupu zkušebního cyklu

Oddíl 8: Postupy měření, včetně kontrol kalibrace a výkonu přístrojů a potvrzení správnosti přístrojů pro zkoušku

Oddíl 9: Měřicí zařízení, včetně měřicích přístrojů, ředicí postupy, postupy odběru vzorků a analytické plyny a hmotnostní normy

Dodatek 1: Postup měření PN

3.   Související přílohy

:

Vyhodnocení údajů a výpočty

:

Příloha VII

:

Zkušební postupy pro motory dual fuel

:

Příloha VIII

:

Referenční paliva

:

Příloha IX

:

Zkušební cykly

:

Příloha XVII

4.   Obecné požadavky

Motory určené ke zkouškám musí splňovat provozní požadavky uvedené v oddíle 5, zkoušejí-li se podle podmínek uvedených v oddíle 6 a zkušebních postupů uvedených v oddíle 7.

5.   Provozní požadavky

5.1.   Emise plynných znečišťujících látek a tuhých znečišťujících částic a CO2 a NH3

Znečišťující látky představují tyto látky:

a)

oxidy dusíku, NOx;

b)

uhlovodíky, vyjádřené jako celkové množství uhlovodíků, HC nebo THC;

c)

oxid uhelnatý, CO;

d)

částice, PM;

e)

počet částic, PN.

Měřené hodnoty plynných znečišťujících látek a znečišťujících částic a CO2 emitovaných motorem se týkají emisí specifických pro brzdění v gramech na kilowatthodinu (g/kWh).

Měří se emise plynných znečišťujících látek a znečišťujících částic, pro které platí mezní hodnoty pro podkategorii motorů zkoušených podle přílohy II nařízení (EU) č. 2016/1628. Výsledky, včetně faktoru zhoršení určeného podle přílohy III, nesmějí překročit příslušné mezní hodnoty.

CO2 se měří a uvádí pro všechny podkategorie motorů podle čl. 41 odst. 4 nařízení (EU) č. 2016/1628.

Jestliže opatření k regulaci emisí NOx, která jsou součástí systému regulace emisí motoru, zahrnují použití činidla, měří se navíc, v souladu s požadavky oddílu 3 přílohy IV, průměrné emise amoniaku (NH3), které nesmí překročit hodnoty stanovené v uvedeném oddílu.

Emise se určí během zkušebních cyklů (v ustáleném a/nebo neustáleném stavu), jak je popsáno v oddíle 7 a příloze XVII. Měřicí systémy musí splňovat požadavky týkající se kontroly kalibrace a vlastností stanovené v oddíle 8 za použití měřicího zařízení popsaného v oddíle 9.

Schvalovací orgán může schválit i jiné systémy nebo analyzátory, zjistí-li se, že poskytují rovnocenné výsledky v souladu s bodem 5.1.1. Výsledky se vypočtou podle požadavků uvedených v příloze VII.

5.1.1.   Rovnocennost

Určení rovnocennosti systému se musí zakládat na korelační studii zahrnující 7 párů vzorků (nebo více) a porovnávající posuzovaný systém s jedním ze systémů uvedených v této příloze. „Výsledky“ představují konkrétní váženou hodnotu emisí cyklu. Korelační zkoušky se musí provést v téže laboratoři, na tomtéž zkušebním stanovišti a s tímtéž motorem a provedou se pokud možno současně. Jak je popsáno v dodatku 3 přílohy VII, rovnocennost průměrných hodnot zkušebních párů se určuje na základě statistických údajů F-zkoušky a t-zkoušky, které byly v ohledu zkušebního stanoviště a motoru získány za totožných podmínek, jak je popsáno výše. Odlehlé hodnoty se určí v souladu s normou ISO 5725 a vyloučí se z databáze. Systémy, které se použijí ke korelačním zkouškám, podléhají schválení schvalovacím orgánem.

5.2.   Obecné požadavky na zkušební cykly

5.2.1.   Schvalovací zkouška EU se provádí pomocí vhodného nesilničního zkušebního cyklu v ustáleném stavu (NRSC) a, v náležitých případech, nesilničního zkušebního cyklu v neustáleném stavu (NRTC nebo LSI-NRTC), jak je uvedeno v článku 24 a v příloze IV nařízení (EU) 2016/1628.

5.2.2.   Technické specifikace a vlastnosti cyklu NRSC jsou stanoveny v dodatku 1 (NRSC s diskrétními režimy) a dodatku 2 (NRSC s lineárními přechody mezi režimy) přílohy XVII. Podle volby výrobce lze zkoušku NRSC provést jako cyklus NRSC s diskrétními režimy nebo, je-li tato možnost k dispozici, jako cyklus s NRSC lineárními přechody mezi režimy (RMC), jak je uvedeno v bodě 7.4.1.

5.2.3.   Technické specifikace a vlastnosti cyklů NRTC a LSI-NRTC jsou uvedeny v dodatku 3 přílohy XVII.

5.2.4.   Konstrukce zkušebních cyklů uvedených v bodě 7.4 a v příloze XVII spočívá na procentuálním podílu maximálního točivého momentu nebo výkonu a zkušebních otáček, které je třeba stanovit k řádnému provedení zkušebních cyklů:

a)

100 % otáčky (maximální zkušební otáčky nebo jmenovité otáčky);

b)

mezilehlé otáčky podle specifikace v bodě 5.2.5.4;

c)

volnoběžné otáčky podle specifikace v bodě 5.2.5.5.

Zkušební otáčky jsou stanoveny v bodě 5.2.5, točivý moment a výkon v bodě 5.2.6.

5.2.5.   Zkušební otáčky

5.2.5.1.   Maximální zkušební otáčky (MTS)

Maximální zkušební otáčky se vypočítají podle bodu 5.2.5.1.1 nebo bodu 5.2.5.1.3.

5.2.5.1.1   Výpočet maximálních zkušebních otáček (MTS)

K výpočtu maximálních zkušebních otáček se provádí postup mapování v neustáleném stavu podle bodu 7.4. Následně se maximální zkušební otáčky určí z hodnot otáček motoru v závislosti na výkonu, které byly získány mapováním. Maximální zkušební otáčky se vypočítají z rovnice (6-1), (6-2) nebo (6-3):

a)

MTS = n lo + 0,95 × (n hin lo)

(6-1)

b)

MTS = n i

(6-2)

kde:

n i

je průměr nejnižších a nejvyšších otáček, při němž se (n 2 norm i + P 2 norm i ) rovná 98 % maximální hodnoty (n 2 norm i + P 2 norm i )

c)

Existují-li pouze jedny otáčky, při nichž se hodnota (n 2 norm i + P 2 norm i ) rovná 98 % maximální hodnoty (n 2 norm i + P 2 norm i ):

MTS = n i

(6-3)

přičemž:

n i

jsou otáčky, při nichž se dosáhne maximální hodnoty (n 2 norm i + P 2 norm i ).

kde:

n

=

jsou otáčky motoru

i

=

je proměnný index představující jednu zaznamenanou hodnotu na mapě motoru

n hi

=

jsou vysoké otáčky podle definice v čl. 2 odst. 12

n lo

=

jsou nízké otáčky podle definice v čl. 2 odst. 13

n normi

=

jsou otáčky motoru normalizované jejich vydělením hodnotou nPmax Formula

P normi

=

je výkon motoru normalizovaný jeho vydělením hodnotou Pmax

Formula

=

je průměr nejnižších a nejvyšších otáček, při němž se výkon rovná 98 % P max

Provede se lineární interpolace zmapovaných hodnot, aby se určily:

a)

otáčky, při nichž se výkon rovná 98 % P max. Existují-li pouze jedny otáčky, při nichž se výkon rovná 98 % Pmax, pak otáčkami, při nichž nastává Pmax jsou otáčky

Formula

;

b)

otáčky, při nichž se (n 2 norm i + P 2 n orm i ) rovná 98 % maximální hodnoty (n 2 norm i + P 2 n orm i ).

5.2.5.1.2.   Použití deklarovaných maximálních zkušebních otáček

Pokud se maximální zkušební otáčky vypočtené podle bodu 5.2.5.1.1 nebo 5.2.5.1.3 neodchylují o více než ± 3 % od maximálních zkušebních otáček udaných výrobcem, lze při zkoušce emisí použít maximální zkušební otáčky udané výrobcem. Je-li dovolená odchylka překročena, použijí se při zkoušce emisí naměřené maximální zkušební otáčky.

5.2.5.1.3.   Použití upravených maximálních zkušebních otáček

Má-li klesající část křivky plného zatížení velmi strmý okraj, může to zkomplikovat správný průběh jízdy při 105 % otáčkách cyklu NRTC. V tomto případě je pod podmínkou předchozího souhlasu technické zkušebny dovoleno použít alternativní hodnotu MTS, která se určí jedou z těchto metod:

a)

MTS lze mírně snížit (maximálně o 3 %), aby bylo možné správně absolvovat jízdu NRTC.

b)

Alternativní MTS se vypočítají z rovnice (6-4):

MTS = ((n maxn idle)/1,05) + n idle

(6-4)

kde:

n max

=

jsou otáčky motoru, při nichž regulátor motoru reguluje otáčky, přičemž požadavek operátora je nastaven na maximum a uplatňuje se nulové zatížení („maximální otáčky při nulovém zatížení“)

n idle

=

jsou volnoběžné otáčky

5.2.5.2.   Jmenovité otáčky

Jmenovité otáčky jsou definovány v čl. 3 odst. 29 nařízení (EU) 2016/1628. Jmenovité otáčky pro zkoušky emisí motorů s proměnlivými otáčkami se určí podle platného postupu mapování stanoveného v oddíle 7.6. Jmenovité otáčky pro motory s konstantními otáčkami udá výrobce podle vlastností regulátoru. Je-li předmětem zkoušky emisí typ motoru s alternativními otáčkami, jak dovoluje čl. 3 odst. 21 nařízení (EU) 2016/1628, udávají se a zkouší veškeré alternativní otáčky.

Jsou-li jmenovité otáčky určené pomocí postupu mapování stanoveného v oddíle 7.6 v rozmezí ±150 ot./min od hodnoty udané výrobcem pro motory kategorie NRS vybavené regulátorem, nebo v rozmezí ±350 ot./min či ±4 % u motorů kategorie NRS bez regulátoru, podle toho, která hodnota je menší, nebo v rozmezí ±100 ot./min u všech ostatních kategorií motorů, lze použít udané hodnoty. Je-li dovolená odchylka překročena, použijí se jmenovité otáčky určené pomocí postupu mapování.

U motorů kategorie NRSh musí být 100 % zkušební otáčky v rozmezí jmenovitých otáček ±350.

U zkušebních cyklů v ustáleném stavu lze místo jmenovitých otáček případně použít maximální zkušební otáčky.

5.2.5.3.   Otáčky při maximálním točivém momentu pro motory s proměnlivými otáčkami

Otáčky při maximálním točivém momentu určené z křivky maximálního točivého momentu, jež byla stanovena na základě příslušného postupu mapování motoru podle bodu 7.6.1 nebo 7.6.2, musí být jedny z těchto:

a)

otáčky, při nichž byl zaznamenán nejvyšší točivý moment nebo

b)

průměr nejnižších a nejvyšších otáček, při němž se točivý moment rovná 98 % maximálního točivého mementu. V případě potřeby se k určení otáček motoru, při nichž se točivý moment rovná 98 % maximálního točivého momentu, použije lineární interpolace.

Jsou-li otáčky při maximálním točivém momentu určené z křivky maximálního točivého momentu v rozmezí ±4 % od otáček při maximálním točivém momentu udaných výrobcem pro motory kategorie NRS nebo NRSh, nebo v rozmezí ±2,5 % od otáček při maximálním točivém momentu udaných výrobcem pro všechny ostatní kategorie motorů, lze pro účely tohoto nařízení použít udanou hodnotu. Je-li dovolená odchylka překročena, použijí se otáčky při maximálním točivém momentu určené z křivky maximálního točivého momentu.

5.2.5.4.   Mezilehlé otáčky

Mezilehlé otáčky musí splňovat jeden z těchto požadavků:

a)

u motorů, které jsou konstruovány na provoz v rozsahu otáček na křivce točivého momentu při plném zatížení, jsou mezilehlými otáčkami otáčky při maximálním točivém momentu, jestliže tyto otáčky jsou v rozsahu od 60 do 75 % jmenovitých otáček;

b)

jestliže jsou otáčky při maximálním točivém momentu nižší než 60 % jmenovitých otáček, pak mezilehlé otáčky jsou 60 % jmenovitých otáček;

c)

jestliže jsou otáčky při maximálním točivém momentu vyšší než 75 % jmenovitých otáček, pak mezilehlé otáčky jsou 75 % jmenovitých otáček. Je-li motor schopen pracovat pouze při otáčkách vyšších než 75 % jmenovitých otáček, jsou mezilehlými otáčkami nejnižší otáčky, při nichž lze motor provozovat;

d)

u motorů, které nejsou konstruovány na provoz v rozsahu otáček na křivce točivého momentu při plném zatížení za podmínek ustáleného stavu, jsou mezilehlé otáčky v rozsahu od 60 do 70 % jmenovitých otáček;

e)

u motorů zkoušených podle cyklu G1, kromě motorů kategorie ATS, jsou mezilehlé otáčky 85 % jmenovitých otáček;

f)

u motorů kategorie ATS zkoušených podle cyklu G1 jsou mezilehlé otáčky 60 % nebo 85 % jmenovitých otáček, podle toho, která hodnota je blíže skutečným otáčkám při maximálním točivém momentu.

Jestliže se při 100 % zkušebních otáčkách místo jmenovitých otáček použijí maximální zkušební otáčky (MTS), musí se jmenovité otáčky nahradit maximálními zkušebními otáčkami rovněž při určování mezilehlých otáček.

5.2.5.5.   Volnoběžné otáčky

Volnoběžnými otáčkami jsou nejnižší otáčky s minimálním zatížením (zatížení vyšší než nulové zatížení nebo nulové), když regulátor motoru reguluje otáčky motoru. U motorů bez regulátoru volnoběžných otáček jsou volnoběžné otáčky výrobcem udávaná hodnota nejnižších otáček motoru, které jsou možné při minimálním zatížení. Volnoběžné otáčky za tepla jsou volnoběžné otáčky zahřátého motoru.

5.2.5.6.   Zkušební otáčky pro motory s konstantními otáčkami

Regulátory motorů s konstantními otáčkami nemusí vždy udržovat naprosto konstantní otáčky. Otáčky se mohou typicky snížit (o 0,1 až 10 procent) pod hodnotu otáček při nulovém zatížení tak, že minimální otáčky nastanou blízko bodu maximálního výkonu motoru. Zkušební otáčky lze u motorů s konstantními otáčkami řídit pomocí regulátoru namontovaného na motoru nebo nastavením požadovaných otáček na zkušebním stavu, což představuje regulátor motoru.

Použije-li se regulátor namontovaný na motoru, jsou 100 % otáčkami regulované otáčky motoru podle definice v čl. 2 odst. 24.

Je-li k simulaci regulátoru použit signál požadovaných otáček zkušebního stavu, jsou 100 % otáčkami při nulovém zatížení otáčky bez zatížení specifikované výrobcem pro uvedené nastavení regulátoru a 100 % otáčkami při plném zatížení jsou pak jmenovité otáčky pro uvedené nastavení regulátoru. Ke stanovení otáček pro ostatní zkušební režimy se použije interpolace.

Pokud má regulátor izochronní provozní nastavení, nebo pokud se jmenovité otáčky a otáčky bez zatížení udávané výrobcem neodchylují o více než 3 %, lze pro 100 % otáčky při všech bodech zatížení použít jedinou hodnotu uvedenou výrobcem.

5.2.6.   Točivý moment a výkon

5.2.6.1.   Točivý moment

Údaje o točivém momentu při zkušebních cyklech jsou procentními hodnotami, které pro daný zkušební režim představují jednu z následujících možností:

a)

poměr požadovaného točivého momentu k nejvyššímu možnému točivému momentu při specifikovaných zkušebních otáčkách (všechny cykly kromě D2 a E2);

b)

poměr požadovaného točivého momentu k točivému momentu odpovídajícímu jmenovitému netto výkonu udanému výrobcem (cyklus D2 a E2).

5.2.6.2.   Výkon

Údaje o výkonu při zkušebních cyklech jsou procentními hodnotami, které pro daný zkušební režim představují jednu z následujících možností:

a)

pro zkušební cyklus E3 jsou údaje o výkonu procentními hodnotami maximálního netto výkonu při 100 % otáčkách, poněvadž tento cyklus je založen na teoretické křivce charakterizující výkon lodního šroubu u plavidel poháněných motory o velkém výkonu bez omezení délky;

b)

pro zkušební cyklus F jsou údaje o výkonu procentními hodnotami maximálního netto výkonu při daných zkušebních otáčkách, s výjimkou volnoběžných otáček, při nichž jsou procentem maximálního netto výkonu při 100 % otáčkách.

6.   Zkušební podmínky

6.1.   Podmínky laboratorních zkoušek

Změří se absolutní teplota (T a) nasávaného vzduchu na vstupu do motoru vyjádřená v kelvinech a suchý atmosférický tlak (p s) vyjádřený v kPa a podle následujících ustanovení a z rovnice (6-5) nebo (6-6) se určí parametr f a. Pokud se atmosférický tlak měří v potrubí, musí se zajistit, aby mezi atmosférou a místem měření docházelo jen k nepatrným ztrátám tlaku a aby se zohlednily změny statického tlaku v potrubí způsobené průtokem. Ve víceválcových motorech s rozvětveným sacím potrubím, např. při uspořádání motoru do V, se použije průměrná teplota oddělených větví. Parametr f a se uvede v protokolu o zkoušce spolu s výsledky zkoušky.

Motory s atmosférickým sáním a motory přeplňované mechanicky:

Formula

(6-5)

Motory přeplňované turbodmychadlem s chlazením nasávaného vzduchu nebo bez tohoto chlazení:

Formula

(6-6)

6.1.1.   Aby byla zkouška považována za platnou, musí být splněny obě tyto podmínky:

a)

f a je v rozmezí 0,93 ≤ f a ≤ 1,07, s výjimkou případů uvedených v bodech 6.1.2 a 6.1.4;

b)

teplota nasávaného vzduchu se udržuje na 298 ± 5 K (25 ± 5 °C), měřeno před kteroukoliv součástí motoru, s výjimkou případů uvedených v bodech 6.1.3 a 6.1.4 a podle požadavků v bodech 6.1.5 a 6.1.6.

6.1.2.   Je-li nadmořská výška laboratoře, v níž se motor zkouší, větší než 600 m, se souhlasem výrobce může f a překročit 1,07 za podmínky, že p s nebude nižší než 80 kPa.

6.1.3.   Pokud je výkon zkoušeného motoru větší než 560 kW, se souhlasem výrobce může maximální hodnota teploty nasávaného vzduchu překročit 303 K (30 °C), nesmí však překročit 308 K (35 °C).

6.1.4.   Je-li nadmořská výška laboratoře, v níž se motor zkouší, větší než 300 m a výkon zkoušeného motoru je větší než 560 kW, se souhlasem výrobce může f a překročit 1,07 za podmínky, že p s nebude nižší než 80 kPa a maximální hodnota teploty nasávaného vzduchu může překročit 303 K (30 °C), avšak nesmí překročit 308 K (35 °C).

6.1.5.   V případě rodiny motorů kategorie NRS o méně než 19 kW sestávající výlučně z typů motorů, které jsou určeny pro sněžné frézy, se teplota nasávaného vzduchu musí udržovat v rozmezí 273 K až 268 K (0 °C až – 5 °C).

6.1.6.   U motorů kategorie SMB se teplota nasávaného vzduchu musí udržovat na 263 ± 5 K (–10 ± 5 °C), s výjimkou případů uvedených v bodě 6.1.6.1.

6.1.6.1.   U motorů kategorie SMB vybavených elektronicky řízeným vstřikováním paliva, které upravuje průtok paliva podle teploty nasávaného vzduchu, se podle volby výrobce může teplota nasávaného vzduchu případně udržovat na 298 ± 5 K (25 ± 5 °C).

6.1.7.   Je přípustné použít:

a)

měřič atmosférického tlaku, jehož výstup se použije jako atmosférický tlak pro celé zkušební zařízení sestávající z více než jednoho zkušebního stanoviště s dynamometrem, pokud si zařízení k práci s nasávaným vzduchem při zkoušce motoru udržuje tlak okolí lišící se nejvýše o ±1 kPa od hodnoty sdíleného atmosférického tlaku;

b)

vlhkoměr pro účely měření vlhkosti nasávaného vzduchu pro celé zkušební zařízení sestávající z více než jednoho zkušebního stanoviště s dynamometrem, pokud si zařízení k práci s nasávaným vzduchem při zkoušce motoru udržuje rosný bod lišící se nejvýše o ±0,5 K od hodnoty sdíleného měření vlhkosti.

6.2.   Motory s chlazením přeplňovacího vzduchu

a)

Musí se použít systém s chlazením přeplňovacího vzduchu s celkovou kapacitou nasávaného vzduchu, která odpovídá nainstalovaným sériově vyráběným motorům používaným v provozu. Laboratorní systém k chlazení přeplňovacího vzduchu musí být vždy konstruován takovým způsobem, aby minimalizoval akumulaci kondenzátu. Před zkouškou emisí musí být veškerý naakumulovaný kondenzát vypuštěn a všechna vypouštěcí zařízení se musí úplně uzavřít. Během zkoušky emisí musí zůstat všechny odtoky uzavřeny. Musí se udržovat tyto podmínky chlazení:

a)

během zkoušky se musí na vstupu do chladiče přeplňovacího vzduchu udržovat teplota chladiva nejméně 20 °C;

b)

při jmenovitých otáčkách a plném zatížení se průtok chladiva musí nastavit tak, aby bylo dosaženo teploty vzduchu za výstupem z chladiče přeplňovacího vzduchu v rozmezí ± 5 °C od hodnoty stanovené výrobcem. Výrobce specifikuje místo, kde se měří teplota vzduchu na výstupu. Toto nastavení průtoku chladiva se musí použít během celé zkoušky;

c)

jestliže výrobce motoru specifikuje mezní hodnoty poklesu tlaku při průchodu chladicím systémem přeplňovacího vzduchu, musí se zajistit, aby pokles tlaku při průchodu chladicím systémem přeplňovacího vzduchu za podmínek motoru stanovených výrobcem byl v mezích specifikovaných výrobcem. Pokles tlaku se měří v místech určených výrobcem.

Pokud se při zkušebním cyklu použijí maximální zkušební otáčky definované v bodě 5.2.5.1 místo jmenovitých otáček, mohou se tyto otáčky použít místo jmenovitých otáček při stanovení teploty přeplňovacího vzduchu.

Cílem je získat výsledky hodnot emisí reprezentativních pro běžný provoz. Vyplývá-li z osvědčeného technického úsudku, že by specifikace v tomto oddíle vedly k nereprezentativním zkouškám (např. k přechlazení přeplňovacího vzduchu), lze použít sofistikovanějších nastavení a ovládání poklesu tlaku přeplňovacího vzduchu, teploty chladiva a průtoku k dosažení reprezentativnějších výsledků.

6.3.   Výkon motoru

6.3.1.   Základ pro měření emisí

Základem pro měření specifických emisí je nekorigovaný netto výkon, jak je definováno v čl. 3 odst. 23 nařízení (EU) 2016/1628.

6.3.2.   Použitá pomocná zařízení

V průběhu zkoušky musí být pomocná zařízení potřebná k provozu stroje namontována na zkušební stav v souladu s požadavky dodatku 2.

Nelze-li pro účely zkoušky namontovat nezbytná pomocná zařízení, musí se určit jimi absorbovaný výkon a odečíst jej od změřeného výkonu motoru.

6.3.3.   Odmontovaná pomocná zařízení

Některá pomocná zařízení, jejichž definice se týká provozu nesilničního mobilního stroje a která lze namontovat na motor, musí být před zkouškou odmontována.

Nelze-li pomocné zařízení odmontovat, je možné stanovit výkon, který toto zařízení absorbuje v nezatíženém stavu a přičíst jej k změřenému výkonu motoru (viz poznámka g v dodatku 2). Jestliže je tato hodnota větší než 3 % maximálního výkonu při zkušebních otáčkách, technická zkušebna ji může ověřit. Výkon absorbovaný pomocnými zařízeními se použije k úpravě nastavených hodnot a k výpočtu práce vykonané motorem během zkušebního cyklu v souladu s bodem 7.7.1.3 nebo bodem 7.7.2.3.1.

6.3.4.   Určení výkonu pomocného zařízení

Výkon absorbovaný pomocnými zařízeními je nutno určit jen u:

a)

pomocných zařízení požadovaných podle dodatku 2, která nejsou namontována do motoru

a/nebo

b)

pomocných zařízení, která nejsou požadována podle dodatku 2 a jsou do motoru namontována.

Hodnoty výkonu pomocných zařízení motoru a metodu měření/výpočtu k určení výkonu absorbovaného pomocnými zařízeními motoru předloží výrobce motoru pro celý provozní rozsah příslušných zkušebních cyklů a schválí je schvalovací orgán.

6.3.5.   Práce motoru ve zkušebním cyklu

Výpočet práce referenčního cyklu a skutečné práce cyklu (viz bod 7.8.3.4) vychází z výkonu motoru podle bodu 6.3.1. V tom případě jsou P f a P r v rovnici (6-7) rovné nule a P se rovná P m.

Jsou-li pomocná zařízení motoru namontována podle bodů 6.3.2 a/nebo 6.3.3, použije se výkon absorbovaný těmito zařízeními ke korekci každé hodnoty P m,i výkonu v právě probíhajícím zkušebním cyklu, a to pomocí rovnice (6-8):

P i = P m,iP f,i + P r,i

(6-7)

P AUX = P r,i – P f,i

(6-8)

kde:

P m,i

je změřený výkon motoru, kW

P f,i

je výkon absorbovaný pomocnými zařízeními či zařízeními, která se při zkoušce mají namontovat, avšak namontována nebyla, kW

P r,i

je výkon absorbovaný pomocnými zařízeními či zařízeními, která se při zkoušce mají odmontovat, avšak namontována byla, kW

6.4.   Systém sání motoru

6.4.1.   Úvod

Je nutné použít systém sání instalovaný na motoru nebo takový systém, který představuje typickou konfiguraci motoru v běžném provozu. Do toho patří chlazení přeplňovacího vzduchu a recirkulace výfukových plynů (EGR).

6.4.2.   Omezení odporu nasávaného vzduchu

Musí se použít systém sání motoru nebo laboratorní zkušební systém, jehož odpor nasávaného vzduchu se liší nejvýše o ±300 Pa od maximální hodnoty uvedené výrobcem pro čistý čistič vzduchu u motoru běžícího při jmenovitých otáčkách a s plným zatížením. Není-li to možné z důvodu konstrukce systému přívodu vzduchu do zkušební laboratoře, je pod podmínkou předchozího souhlasu technické zkušebny povolen odpor nepřekračující hodnotu uvedenou výrobcem pro špinavý filtr. Statický rozdíl tlaku na vstupním odporu se měří v místě a za otáček a točivého momentu určených výrobcem. Pokud výrobce nespecifikuje příslušné místo, měří se tento tlak před každým připojením systému turbodmychadla nebo recirkulace výfukových plynů (EGR) k systému nasávání vzduchu.

Pokud se při zkušebním cyklu použijí maximální zkušební otáčky definované v bodě 5.2.5.1 místo jmenovitých otáček, mohou se tyto otáčky použít místo jmenovitých otáček při nastavení odporu, kterému je nasávaný vzduch vystaven.

6.5.   Výfukový systém motoru

Je nutné použít výfukový systém instalovaný na motoru nebo takový, který představuje typickou konfiguraci motoru v běžném provozu. Výfukový systém musí splňovat požadavky na odběr vzorků výfukových emisí stanovené v bodě 9.3. Je nutno použít výfukový systém motoru nebo laboratorní zkušební systém, u něhož protitlak výfukového plynu činí 80 až 100 % maximální hodnoty odporu výfukového plynu při jmenovitých otáčkách a plném zatížení. Odpor výfukového plynu lze nastavit pomocí ventilu. Jestliže je maximální odpor výfukového plynu 5 kPa nebo méně, nastavený bod nesmí být větší než 1,0 kPa od maxima. Pokud se při zkušebním cyklu místo jmenovitých otáček použijí maximální zkušební otáčky definované v bodě 5.2.5.1, mohou se tyto otáčky použít místo jmenovitých otáček při nastavení odporu výfukového plynu.

6.6.   Motor se systémem následného zpracování výfukových plynů

Jestliže je motor vybaven systémem následného zpracování výfukových plynů, který není namontován přímo na motoru, musí mít výfuková trubka stejný průměr, jako se používá v praxi, do vzdálenosti odpovídající nejméně čtyřem průměrům trubky proti směru proudění od vstupu v začátku expanzní části, která obsahuje zařízení k následnému zpracování výfukových plynů. Vzdálenost mezi přírubou sběrného výfukového potrubí nebo výstupem z turbokompresoru a systémem následného zpracování výfukových plynů musí být stejná jako v uspořádání na nesilničním mobilním stroji nebo musí mít hodnotu uvedenou výrobcem. Uvádí-li to výrobce, musí být trubka izolována, aby teplota na vstupu následného zpracování odpovídala specifikacím výrobce. Pokud výrobce uvedl další požadavky na montáž, je nutno je při zkušební konfiguraci rovněž dodržet. Protitlak výfukového plynu nebo odpor ve výfuku se nastaví podle bodu 6.5. U zařízení k následnému zpracování výfukových plynů s proměnlivým odporem výfukového plynu je maximální odpor výfukového plynu použitý v bodě 6.5 definován při podmínce následného zpracování (záběh/stárnutí a regenerace / úroveň zaplnění) specifikované výrobcem. Během slepých zkoušek a pro účely mapování motoru může být nádoba se zařízením pro následné zpracování odstraněna a nahrazena ekvivalentní nádobou s neaktivním katalyzátorem.

Emise naměřené během zkušebního cyklu musí být reprezentativní pro emise ve skutečném provozu. Je-li motor vybaven systémem následného zpracování výfukových plynů, který vyžaduje použití činidla, je nutno při všech zkouškách použít výrobcem stanovené činidlo.

U motorů kategorií NRE, NRG, IWP, IWA, RLR, NRS, NRSh, SMB a ATS vybavených systémem k následnému zpracování výfukových plynů, které mají občasnou (periodickou) regeneraci, jak je popsáno v bodě 6.6.2, musí být výsledky hodnot emisí upraveny tak, aby braly v úvahu jednotlivé regenerace. V takovém případě průměrná hodnota emisí závisí na frekvenci regenerace z hlediska těch částí zkoušek, během kterých k regeneraci dochází. U systémů následného zpracování výfukových plynů s procesem regenerace, k němuž dochází buď kontinuálně, nebo alespoň jednou během příslušného cyklu v neustáleném stavu (NRTC nebo LSI-NRTC) nebo cyklu RMC („kontinuální regenerace“) podle bodu 6.6.1 se nevyžaduje zvláštní zkušební postup.

6.6.1.   Kontinuální regenerace

U systému následného zpracování výfukových plynů založeného na postupu kontinuální regenerace musí být hodnoty emisí měřeny na systému následného zpracování výfukových plynů, který byl stabilizován, aby byla zaručena opakovatelnost výsledků trendů emisí. K procesu regenerace musí dojít během zkoušky NRTC, LSI-NRTC nebo NRSC se startem za tepla nejméně jednou a výrobce musí udat normální podmínky, za nichž k regeneraci dochází (množství úsad sazí, teplota, protitlak výfukových plynů atd.). Aby se prokázalo, že je regenerační proces kontinuální, provedou se nejméně tři jízdy cyklu NRTC, LSI-NRTC nebo NRSC se startem za tepla. V případě cyklu NRTC se startem za tepla se motor zahřeje podle bodu 7.8.2.1, stabilizuje podle bodu 7.4.2.1 písm. b) a provede se první cyklus NRTC se startem za tepla.

Následný cyklus NRTC se startem za tepla se zahájí po stabilizaci motoru podle bodu 7.4.2.1 písm. b). Během zkoušek musí být zaznamenány teplota a tlak výfukového plynu (teplota před a za systémem následného zpracování výfukových plynů, protitlak výfukového plynu atd.). Systém následného zpracování výfukových plynů lze považovat za vyhovující, jestliže podmínky uvedené výrobcem nastanou během zkoušky po dostatečně dlouhou dobu a rozptyl naměřených hodnot emisí není vyšší než ±25 % od střední hodnoty nebo 0,005 g/kWh podle toho, která hodnota je vyšší.

6.6.2.   Občasná regenerace

Toto ustanovení se vztahuje pouze na motory se systémem následného zpracování výfukových plynů, k jehož regeneraci nedochází často, obecně v intervalech kratších než 100 hodin běžného provozu motoru. U takových motorů se pro účely korekce nahoru nebo dolů ve smyslu bodu 6.6.2.4 určí aditivní, nebo multiplikační faktory („korekční faktor“).

Zkoušení a vygenerování korekčních faktorů se vyžaduje pouze u jednoho příslušného zkušebního cyklu v neustáleném stavu (NRTC nebo LSI-NRTC) nebo cyklu RMC. Vygenerované faktory lze aplikovat na výsledky z ostatních příslušných zkušebních cyklů, včetně NRSC s diskrétními režimy.

Pokud se ze zkoušení za použití zkušebního cyklu v neustáleném stavu (NRTC nebo LSI-NRTC) nebo cyklu RMC nepodařilo získat žádné vhodné korekční faktory, stanoví se korekční faktory pomocí příslušné zkoušky NRSC s diskrétními režimy. Faktory vygenerované při zkoušce za použití cyklu NRSC s diskrétními režimy lze použít pouze pro cyklus NRSC s diskrétními režimy.

V případě RMC a NRSC s diskrétními režimy se zkoušení a generace korekčních faktorů nevyžaduje.

6.6.2.1.   Povinnost stanovit korekční faktory pomocí cyklu NRTC, LSI-NRTC nebo RMC

Emise se měří nejméně při třech provedeních cyklu NRTC, LSI-NRTC nebo RMC se startem za tepla, přičemž u jednoho provedení nastane regenerace a u dvou nikoliv, a to při stabilizovaném systému následného zpracování výfukových plynů. Během cyklu NRTC, LSI-NRTC nebo RMC s regenerací musí k procesu regenerace dojít nejméně jednou. Jestliže regenerace zaujímá více než jeden cyklus NRTC, LSI-NRTC nebo RMC, provedou se následující cykly NRTC, LSI-NRTC nebo RMC a pokračuje se v měření emisí bez stabilizace a bez zastavování motoru, dokud není regenerace ukončena, a ze zkoušek se vypočte průměr. Jestliže se regenerace ukončí v průběhu některé ze zkoušek, ve zkoušce se pokračuje v celé její délce.

Pomocí rovnic (6-10) až (6-13) se pro celý příslušný cyklus určí odpovídající korekční faktor.

6.6.2.2.   Povinnost stanovit korekční faktory pomocí zkoušení NRSC s diskrétními režimy

Při stabilizovaném systému následného zpracování výfukových plynů se emise měří alespoň při třech provedeních každého zkušebního režimu příslušného NRSC s diskrétními režimy, u něhož lze vyhovět podmínkám regenerace, přičemž jedno provedení je s regenerací a dvě bez regenerace. K měření částic se použije metoda s více filtry popsaná v bodě 7.8.1.2 písm. c). Jestliže se při konkrétním zkušebním režimu regenerace zahájí, avšak na konci období odběru vzorků není dokončena, odběr vzorků se prodlouží až do skončení regenerace. Jede-li se v tomtéž režimu více zkoušek, vypočte se průměrný výsledek. Postup se opakuje pro každý zkušební režim.

Pro režimy, u nichž v rámci příslušného režimu došlo k regeneraci, se pomocí rovnic (6-10) až (6-13) určí odpovídající korekční faktor.

6.6.2.3.   Obecný postup pro generaci korekčních faktorů u občasné regenerace (IRAF)

Výrobce určí běžné podmínky, za nichž k regeneraci dochází (množství úsad sazí, teplota, protitlak výfukových plynů atd.). Výrobce rovněž poskytne frekvenci výskytu regenerace v podobě počtu zkoušek, během nichž k regeneraci dochází. Přesný postup určení této frekvence se dohodne mezi výrobcem motoru a schvalovacím nebo certifikačním orgánem na základě osvědčeného odborného úsudku.

Pro účely regenerační zkoušky poskytne výrobce systém následného zpracování výfukových plynů, který předtím zachytil znečišťující látky. K regeneraci nesmí dojít během stabilizační fáze motoru. Volitelně může výrobce provést následně za sebou zkoušky příslušného cyklu, až se systém následného zpracování výfukových plynů zaplní. Emise se nemusí měřit u všech zkoušek.

Průměrné hodnoty emisí mezi fázemi regenerace se určí aritmetickým průměrem několika rovnoměrně rozložených zkoušek příslušného cyklu. Musí se provést nejméně jeden příslušný cyklus co nejblíže před zkouškou regenerace a jeden příslušný cyklus ihned po ní.

Během zkoušky regenerace se zaznamenávají všechny údaje, které jsou potřebné ke zjištění regenerace (emise CO nebo NOx, teplota před systémem následného zpracování výfukových plynů a za ním, protitlak výfukových plynů atd.). Během procesu regenerace může dojít k překročení příslušných mezních hodnot emisí. Schéma postupu zkoušky je na obrázku 6.1.

Obrázek 6.1

Schéma občasné (periodické) regenerace s počtem měření n a počtem měření během regenerace n r

Image

Průměrná specifická míra emisí ze zkoušek provedených podle bodů 6.6.2.1 nebo 6.6.2.2 [g/kWh nebo #/kWh] se váží pomocí rovnice (6-9) (viz obrázek 6.1):

Formula

(6-9)

kde:

n

je počet zkoušek, při nichž nedochází k regeneraci

n r

je počet zkoušek, při nichž dochází k regeneraci (minimálně jedna zkouška)

Formula

jsou průměrné specifické emise u zkoušky, při níž nedochází k regeneraci [g/kWh nebo #/kWh]

Formula

jsou průměrné specifické emise u zkoušky, při níž dochází k regeneraci [g/kWh nebo #/kWh]

V závislosti na volbě výrobce a na základě osvědčeného technického úsudku lze korekční faktor regenerace k r, vyjadřující průměrnou hodnotu emisí, vypočítat buď multiplikačně, nebo aditivně pro všechny plynné znečišťující látky a, existuje-li příslušný limit, pro částice (PM) a počet částic (PN) pomocí rovnic (6-10) až (6-13):

 

Multiplikačně

Formula

(korekční faktor regenerace nahoru)

(6-10)

Formula

(korekční faktor regenerace dolů)

(6-11)

 

Aditivně

k ru,a = e we

(korekční faktor regenerace nahoru)

(6-12)

k rd,a = e we r

(korekční faktor regenerace dolů)

(6-13)

6.6.2.4.   Použití korekčních faktorů

Korekční faktory regenerace nahoru se vynásobí změřenými hodnotami emisí nebo se k nim přičtou u všech zkoušek, ve kterých nedochází k regeneraci. Korekční faktory regenerace dolů se vynásobí změřenými hodnotami emisí nebo se k nim přičtou u všech zkoušek, při nichž dochází k regeneraci. V průběhu celého zkoušení se výskyt regenerace identifikuje způsobem, ze kterého je dobře zřejmý. V případě, že není zjištěna žádná regenerace, použije se korekční faktor nahoru.

S odkazem na přílohu VII a dodatek 5 přílohy VII o výpočtech emisí specifických pro brzdění se korekční faktor regenerace:

a)

je-li stanoven za celý vážený cyklus, použije se na výsledky příslušných vážených cyklů NRTC, LSI-NRTC a NRSC;

b)

je-li stanoven konkrétně pro jednotlivé režimy příslušného cyklu NRSC s diskrétními režimy, použije se na výsledky těch režimů příslušného cyklu NRSC s diskrétními režimy, u nichž dochází k regeneraci před výpočtem vážených emisí za cyklus. V tomto případě se k měření PM použije metoda s více filtry;

c)

smí rozšířit na další členy stejné rodiny motorů;

d)

smí rozšířit na jiné rodiny motorů patřící do stejné rodiny motorů se stejným systémem následného zpracování výfukových plynů, jak je definováno v příloze IX prováděcího nařízení (EU) 2017/656, a to s předchozím schválením schvalovacího orgánu založeným na technických podkladech od výrobce, které potvrzují, že příslušné hodnoty emisí jsou podobné.

Použijí se tyto varianty:

a)

výrobce se může rozhodnout, že vypustí korekční faktory pro jednu nebo více ze svých rodin motorů (nebo konfigurací), protože vliv regenerace je malý, nebo protože nelze identifikovat, kdy k regeneraci dochází. V takových případech se nepoužije žádný korekční faktor a výrobce odpovídá za splnění mezních hodnot emisí u všech zkoušek, bez ohledu na to, zda dochází k regeneraci.

b)

schvalovací orgán může na žádost výrobce zohlednit případy regenerace odlišným způsobem, než je stanoveno v písm. a). Avšak tuto možnost lze využít jen v případech, ke kterým dochází velmi zřídka a které prakticky nelze řešit použitím korekčních faktorů popsaných v písm. a).

6.7.   Chladicí systém

Musí se použít systém chlazení motoru s dostatečnou kapacitou k udržení motoru na normálních provozních teplotách předepsaných výrobcem pro nasávaný vzduch, olej, chladivo, blok či hlavy válců. Lze použít laboratorní pomocné chladiče a ventilátory.

6.8.   Mazací olej

Údaje o mazacím oleji musí být uvedeny výrobcem a olej musí být reprezentativní pro mazací oleje na trhu. Vlastnosti mazacího oleje použitého při zkoušce se musí zaznamenat a předložit zároveň s výsledky zkoušky.

6.9.   Specifikace referenčního paliva

Referenční paliva pro zkoušku jsou uvedena v příloze IX.

Teplota paliva musí být v souladu s doporučeními výrobce. Teplota paliva se měří na vstupu palivového vstřikovacího čerpadla nebo podle specifikace výrobce a místo měření se zaznamená.

6.10.   Emise z klikové skříně

Tento oddíl se použije na motory kategorií NRE, NRG, IWP, IWA, RLR, NRS, NRSh, SMB a ATS splňující etapu V mezních hodnot emisí stanovených v příloze II nařízení (EU) 2016/1628.

Emise z klikové skříně, které jsou vypouštěny přímo do okolního ovzduší, se při všech zkouškách emisí přičtou k emisím z výfuku (fyzicky nebo matematicky).

Výrobci, kteří této výjimky využijí, musí motory nastavit tak, aby všechny emise z klikové skříně mohly být odvedeny do odběrného systému. Pro účely tohoto bodu se emise z klikové skříně, které se v celém průběhu provozu odvádějí do proudu výfukových plynů před systémem k následnému zpracování výfukových plynů, nepokládají za vypouštěné přímo do okolního ovzduší.

Volné emise z klikové skříně musí být odváděny do výfukového systému za účelem měření emisí takto:

a)

potrubí musí být z materiálu s hladkým povrchem, elektricky vodivého a nereagujícího s emisemi z klikové skříně. Trubky musí být co nejkratší;

b)

počet ohybů potrubí, kterým se ve zkušebně odvádějí plyny z klikové skříně, musí být co nejmenší a poloměr všech nevyhnutelných ohybů musí být co největší;

c)

potrubí, kterým se ve zkušebně odvádějí výfukové plyny z klikové skříně, musí splňovat specifikace výrobce motoru pro protitlak z klikové skříně;

d)

potrubí, kterým se odvádějí plyny z klikové skříně, musí ústit do proudu surového výfukového plynu za každým systémem následného zpracování výfukových plynů, za každým odporem výfukového plynu, který je do výfuku namontován, a v dostatečné vzdálenosti před všemi odběrnými sondami, aby se před odběrem zajistilo úplné smísení s výfukovými plyny z motoru. Potrubí, kterým se vedou plyny z klikové skříně, musí zasahovat do volného proudu výfukového systému, aby se zabránilo jevům mezní vrstvy a aby se podporovalo smíšení. Výstup z potrubí, kterým se vedou plyny z klikové skříně, může být orientován v libovolném směru vzhledem k toku surového výfukového plynu.

7.   Zkušební postupy

7.1.   Úvod

Tato kapitola popisuje způsob stanovení emisí plynných znečisťujících látek a znečisťujících částic emisí specifických pro brzdění u motoru určeného ke zkouškám. Zkoušený motor musí být základním motorem rodiny motorů, jak je specifikována v příloze IX prováděcího nařízení (EU) 2017/656.

Laboratorní zkoušku emisí tvoří měření emisí a dalších parametrů zkušebních cyklů vymezených v příloze XVII. Probírají se tato hlediska:

a)

laboratorní konfigurace pro měření emisí (bod 7.2);

b)

postupy ověřování před zkouškou a po zkoušce (bod 7.3);

c)

zkušební cykly (bod 7.4);

d)

obecný sled zkoušek (bod 7.5);

e)

mapování motoru (bod 7.6);

f)

generování zkušebního cyklu (bod 7.7);

g)

postup konkrétního zkušebního cyklu (bod 7.8).

7.2.   Zásada měření emisí

K měření emisí specifických pro brzdění prochází motor příslušnými zkušebními cykly vymezenými v bodě 7.4. K měření emisí specifických pro brzdění se určí hmotnost znečišťujících látek ve výfukových emisích (HC, CO, NOx a PM), počet částic ve výfukových emisích (tj. PN), hmotnost CO2 ve výfukových emisích a odpovídající práce motoru.

7.2.1.   Hmotnost složek

Celková hmotnost každé jednotlivé složky se určí za příslušný zkušební cyklus použitím těchto metod:

7.2.1.1.   Kontinuální odběr vzorků

U kontinuálního odběru vzorků se průběžně měří koncentrace složky v surovém nebo ve zředěném výfukovém plynu. Tato koncentrace se vynásobí kontinuálním průtokem výfukového plynu (surového nebo zředěného) v místě odběru emisí k určení průtoku složky. Emise složky se v průběhu zkušebního intervalu neustále sčítají. Celkovou hmotností emitované složky je tento součet.

7.2.1.2.   Odběr dávek

U odběru dávek se kontinuálně odebírá vzorek surového nebo zředěného výfukového plynu a ukládá se pro pozdější měření. Odebraný vzorek musí být proporcionální k průtoku surového nebo zředěného výfukového plynu. U jednotlivých odebraných dávek jsou plynné složky shromážděny ve vaku a znečišťující částice jsou zachyceny na filtru. V zásadě se metoda výpočtu emisí provede takto: koncentrace složek v odebraných dávkách se vynásobí celkovou hmotností nebo hmotnostním průtokem (surového nebo zředěného plynu), z nichž byla dávka během zkušebního cyklu odebrána. Výsledkem je celková hmotnost nebo hmotnostní průtok emitované složky. K výpočtu koncentrace znečišťujících částic se částice zachycené z proporcionálně odebraného výfukového plynu na filtru vydělí množstvím přefiltrovaného výfukového plynu.

7.2.1.3.   Kombinovaný odběr vzorků

Je přípustné jakkoliv kombinovat průběžný odběr vzorků a odběr vzorků dávkami (např. měření částic odběrem dávek a měření plynných emisí kontinuálním odběrem).

Obrázek 6.2 popisuje tyto dva aspekty zkušebních postupů k měření emisí: zařízení s odběrnými vedeními pro surový a zředěný výfukový plyn a operace nutné ke kalkulaci emisí znečišťujících látek ve zkušebních cyklech v ustáleném stavu a neustáleném stavu.

Obrázek 6.2

Zkušební postupy pro měření emisí

Image

7.2.2.   Určení vykonané práce

Práce vykonaná v cyklu se určí za celý cyklus tak, že se synchronně použijí hodnoty otáček a točivého momentu k výpočtu okamžitých hodnot výkonu motoru na brzdě. Výkon motoru na brzdě se spojí za zkušební cyklus, čímž se určí celková práce.

7.3.   Ověření a kalibrace

7.3.1.   Postupy před zkouškou

7.3.1.1.   Stabilizace

Pro dosažení stabilních podmínek musí být odběrný systém a motor stabilizovány před začátkem sledu zkoušek, jak je uvedeno v tomto bodě.

Stabilizace motoru slouží k dosažení reprezentativnosti emisí a regulace emisí během zkušebního cyklu a omezení zkreslení, aby se dosáhlo stabilních podmínek pro následující zkoušku emisí.

Emise lze měřit během stabilizačních cyklů za předpokladu, že se provede předem stanovený počet stabilizačních cyklů a měřicí systém byl spuštěn podle požadavků bodu 7.3.1.4. Rozsah stabilizace určí výrobce motoru ještě před zahájením stabilizace. Stabilizace se provádí následovně, přičemž specifické cykly pro stabilizaci jsou tytéž, jako cykly pro zkoušky emisí.

7.3.1.1.1   Stabilizace před provedením cyklu v neustáleném stavu (NRTC) se startem za studena

Motor se stabilizuje provedením alespoň jednoho cyklu NRTC se startem za tepla. Bezprostředně po dokončení každého stabilizačního cyklu se motor musí vypnut a musí se dodržet doba odstavení vozidla za tepla s vypnutým motorem. Okamžitě po dokončení posledního stabilizačního cyklu se motor musí vypnut a zahájí se jeho chlazení popsané v bodě 7.3.1.2.

7.3.1.1.2   Stabilizace před provedením cyklu NRTC se startem za tepla nebo cyklu LSI-NRTC

Tento bod popisuje stabilizaci, kterou je třeba provést, má-li se vzorek emisí odebírat při cyklu NRTC se startem za tepla bez provedení cyklu NRTC se startem za studena, nebo při cyklu LSI-NRTC. Motor se stabilizuje provedením alespoň jednoho cyklu NRTC se startem za tepla, nebo případně cyklu LSI-NRTC. Bezprostředně po dokončení každého stabilizačního cyklu se motor musí vypnut a další cyklus se zahájí co nejdříve poté. Doporučuje se, aby byl další stabilizační cyklus zahájen do 60 sekund po dokončení předcházejícího stabilizačního cyklu. V příslušných případech se po posledním stabilizačním cyklu zařadí odpovídající doba odstavení za tepla (NRTC se startem za tepla) nebo chlazení (LSI-NRTC) předtím, než je motor nastartován pro zkoušku emisí. Neuplatní-li se doba odstavení za tepla nebo chlazení, doporučuje se, aby byla zkouška emisí zahájena do 60 sekund po dokončení posledního stabilizačního cyklu.

7.3.1.1.3   Stabilizace pro cyklus NRSC s diskrétními režimy

U kategorií motorů jiných než NRS a NRSh se motor zahřeje a nechá v chodu, dokud se teploty motoru (chladicí voda a mazací olej) neustálí při 50 % otáček a 50 % točivého momentu v případě jakéhokoli zkušebního cyklu NRSC s diskrétními režimy jiného než typu D2, E2 nebo G, nebo při jmenovitých otáčkách motoru a při 50 % točivého momentu v případě jakéhokoli zkušebního cyklu NRSC s diskrétními režimy typu D2, E2 nebo G. U motoru, v jehož případě jsou k vygenerování zkušebních otáček použity MTS, se 50 % otáček vypočte podle bodu 5.2.5.1, ve všech ostatních případech se výpočet provede podle bodu 7.7.1.3. 50 % točivého momentu je definováno jako 50 % maximálního točivého momentu dosažitelného při těchto otáčkách. Se zkouškou emisí se začne, aniž by se motor zastavil.

U kategorií motorů NRS a NRSh se motor zahřeje podle doporučení výrobce a osvědčeného technického úsudku. Před zahájením odběru vzorků emisí musí motor běžet v režimu 1 příslušného zkušebního cyklu, dokud se neustálí teploty motoru. Se zkouškou emisí se začne, aniž by se motor zastavil.

7.3.1.1.4   Stabilizace pro cyklus RMC

Výrobce motoru zvolí buď stabilizační sled a), nebo b). Motor se stabilizuje podle zvoleného sledu.

a)

V závislosti na počtu zkušebních režimů se motor stabilizuje tím, že se provede alespoň druhá polovina cyklu RMC. Mezi jednotlivými cykly nesmí být motor vypnut. Bezprostředně po dokončení každého stabilizačního cyklu se co nejdříve zahájí další cyklus (včetně zkoušky emisí). Je-li to možné, doporučuje se, aby byl další cyklus zahájen do 60 sekund po dokončení posledního stabilizačního cyklu.

b)

Motor se zahřeje a nechá v chodu, dokud se teploty motoru (chladicí voda a mazací olej) neustálí při 50 % otáček a 50 % točivého momentu v případě jakéhokoli zkušebního cyklu s lineárními přechody mezi režimy (RMC) jiného než typu D2, E2 nebo G, nebo při jmenovitých otáčkách motoru a při 50 % točivého momentu v případě jakéhokoli zkušebního cyklu RMC typu D2, E2 nebo G. U motoru, v jehož případě jsou k vygenerování zkušebních otáček použity MTS, se 50 % otáček vypočte podle bodu 5.2.5.1 a ve všech ostatních případech se výpočet provede podle bodu 7.7.1.3. 50 % točivého momentu je definováno jako 50 % maximálního točivého momentu dosažitelného při těchto otáčkách.

7.3.1.1.5   Vychladnutí motoru (NRTC)

Lze použít přirozené nebo nucené chlazení. U nuceného chlazení se použije osvědčený technický úsudek k nastavení systémů tak, aby chladicí vzduch obtékal motor, aby studený olej proudil mazacím systémem motoru, aby se teplo z chladiva odvádělo chladicím systémem motoru a aby se odvádělo teplo ze systému k následnému zpracování výfukových plynů. V případě uměle vyvolaného vychladnutí u systému následného zpracování výfukových plynů se chladicí vzduch použije až poté, co systém následného zpracování výfukových plynů vychladl na teplotu nižší, než je jeho teplota pro aktivaci katalyzátoru. Není přípustný žádný způsob ochlazování, který by vedl k nereprezentativním emisím.

7.3.1.2.   Ověření kontaminace uhlovodíky

Existuje-li předpoklad, že uhlovodíky významně kontaminují měřicí systém výfukového plynu, je možné ověřit kontaminaci uhlovodíky nulovacím plynem a případné znečištění lze odstranit. Musí-li se zkontrolovat rozsah kontaminace a uhlovodíků v systému, je nutné tak učinit v průběhu 8 hodin předcházejících začátku každého zkušebního cyklu. Hodnoty se zaznamenají pro účely pozdější korekce. Před touto kontrolou se musí zkontrolovat těsnost systému a provést kalibrace analyzátoru FID.

7.3.1.3.   Příprava měřicího zařízení pro odběr vzorků

Před začátkem odběru vzorků emisí se učiní následující kroky:

a)

v průběhu 8 hodin předcházejících odběru emisí podle bodu 8.1.8.7 se přezkouší těsnost systému;

b)

pro odběr vzorků v dávkách se připojí čistá úložná média, jako jsou vyprázdněné vaky nebo filtry, u nichž byla změřena jejich hmotnost tara;

c)

spustí se všechny měřicí přístroje podle instrukcí výrobce přístrojů a osvědčeného technického úsudku;

d)

nastartují se ředicí systémy, odběrná čerpadla, chladicí ventilátory a systém pro shromažďování údajů;

e)

seřídí se průtoky vzorků na požadované úrovně, s použitím obtoků, je-li to žádoucí;

f)

výměníky tepla v systému odběru vzorků se předehřejí nebo předchladí, aby se nalézaly ve svých provozních rozsazích teplot pro zkoušku;

g)

vyhřívané nebo chlazené součásti, jako jsou odběrná potrubí, filtry, chladiče a čerpadla se stabilizují na své provozní teploty;

h)

systém k ředění toku výfukových plynů se uvede do činnosti nejméně 10 minut před začátkem sledu zkoušek;

i)

provede se kalibrace analyzátorů plynu a vynulují se kontinuální analyzátory podle postupu v následujícím bodě 7.3.1.4;

j)

všechna elektronická integrační zařízení se před začátkem každého intervalu zkoušky vynulují nebo znovu vynulují.

7.3.1.4.   Kalibrace analyzátorů plynů

Vyberou se vhodné pracovní rozsahy analyzátoru plynu. Jsou povoleny analyzátory emisí s automatickým nebo ručním přepínáním pracovních rozsahů. Během zkoušky používající zkušebních cyklů v neustáleném stavu (NRTC nebo LSI-NRTC) nebo cyklu RMC a během doby odběru plynných emisí na konci každého režimu v případě zkoušení v cyklu NRSC s diskrétními režimy nelze přepínat rozsah analyzátorů emisí. Rovněž nelze během zkušebního cyklu přepínat zesílení analogového provozního zesilovače (zesilovačů) analyzátoru.

Všechny kontinuální analyzátory se vynulují a kalibrují pro plný rozsah plyny podle mezinárodních norem, jež odpovídají specifikacím bodu 9.5.1. U analyzátorů FID se musí nastavit plný rozsah na bázi uhlíkového čísla jedna (C1).

7.3.1.5.   Přípravná stabilizace filtru částic a zjištění hmotnosti tara

Přípravná stabilizace filtru částic a zjištění hmotnosti tara se provede v souladu s bodem 8.2.3.

7.3.2.   Postupy po provedení zkoušky

Po ukončení odběru vzorků emisí se učiní následující kroky:

7.3.2.1.   Ověření proporcionálního odběru vzorků

U každé proporcionální dávky odebraných vzorků, jako je vzorek v jímacím vaku nebo vzorek částic, se ověří, že byl udržován proporcionální odběr podle bodu 8.2.1. U metody s jediným filtrem a zkušebního cyklu s diskrétním ustáleným stavem se provede výpočet efektivního váhového faktoru částic. Každý vzorek, který nesplňuje požadavky bodu 8.2.1, se považuje za neplatný.

7.3.2.2.   Stabilizace a vážení filtru částic po zkoušce

Použité filtry částic se musí umístit do zakrytých nebo utěsněných nádržek nebo se uzavřou držáky filtru, aby se odběrné filtry chránily proti kontaminaci z okolí. Tímto způsobem chráněné se zaplněné filtry musí vrátit do komory nebo místnosti, které jsou určeny ke stabilizaci filtrů částic. Následně se odběrné filtry částic stabilizují a zváží podle bodu 8.2.4 (zacházení s filtry částic po stabilizaci a kompletní postupy vážení).

7.3.2.3.   Analýza plynných vzorků odebraných dávkami

Co možno nejdříve se provedou následující úkony:

a)

všechny analyzátory plynu pro odběr dávkami se vynulují a kalibrují pro plný rozsah nejpozději 30 minut od ukončení zkušebního cyklu, nebo je-li to proveditelné, v průběhu doby odstavení, aby se ověřilo, že analyzátory plynu jsou stále stabilní;

b)

všechny konvenčně odebrané vzorky plynů se analyzují nejpozději do 30 minut od ukončení cyklu NRTC se startem za tepla nebo v průběhu doby odstavení;

c)

vzorky pozadí se analyzují do 60 minut od ukončení cyklu NRTC se startem za tepla.

7.3.2.4.   Ověření posunu

Po kvantifikaci výfukového plynu se tímto způsobem ověří posun:

a)

V případě analyzátorů plynu pracujících s dávkami nebo kontinuálně se po provedení stabilizace analyzátoru nulovacím plynem zaznamená střední hodnota analyzátoru. Stabilizace může zahrnovat čas nutný k vyčištění analyzátoru od jakéhokoli vzorku plynu a všechny doplňkové časy zohledňující odezvu analyzátoru;

b)

Po provedení stabilizace analyzátoru kalibračním plynem pro plný rozsah se zaznamená střední hodnota analyzátoru. Stabilizace může zahrnovat čas nutný k vyčištění analyzátoru od jakéhokoli vzorku plynu a všechny doplňkové časy zohledňující odezvu analyzátoru;

c)

Tyto údaje slouží k potvrzení správnosti a provedení korekce posunem, jak je popsáno v bodě 8.2.2.

7.4.   Zkušební cykly

Schvalovací zkouška EU se provádí pomocí vhodného cyklu NRSC a, v náležitých případech, NRTC nebo LSI-NRTC, podle specifikací v článku 23 a v příloze IV nařízení (EU) 2016/1628. Technické specifikace a vlastnosti cyklů NRSC, NRTC a LSI-NRTC jsou stanoveny v příloze XVII a metoda k určení nastavení zatížení a otáček pro tyto zkušební cykly v oddíle 5.2.

7.4.1.   Zkušební cykly v ustáleném stavu

Nesilniční zkušební cykly v ustáleném stavu (NRSC) jsou specifikovány v dodatcích 1 a 2 přílohy XVII jako seznam NRSC s diskrétními režimy (provozních bodů), v němž ke každému provoznímu bodu přísluší jedna hodnota otáček a jedna hodnota točivého momentu. V případě cyklu NRSC je při měření motor zahřátý a běží podle specifikací výrobce. Podle volby výrobce může být cyklus NRSC proveden jako NRSC s diskrétními režimy nebo jako cyklus RMC, jak je vysvětleno v bodech 7.4.1.1 a 7.4.1.2. Není nutné provádět zkoušku emisí podle bodů 7.4.1.1 a 7.4.1.2.

7.4.1.1.   NRSC s diskrétními režimy

NRSC s diskrétními režimy jsou cykly probíhající za tepla, během nichž se emise začínají měřit po nastartování motoru, jeho zahřátí a běhu, jak je specifikováno v bodě 7.8.1.2. Každý cyklus je tvořen několika režimy otáček a zatížení (s příslušnými váhovými faktory pro každý režim), které pokrývají typický provozní rozsah specifikované kategorie motorů.

7.4.1.2.   NRSC s lineárními přechody mezi režimy

RMC jsou cykly probíhající za tepla, během nichž se emise začínají měřit po nastartování motoru, jeho zahřátí a běhu, jak je specifikováno v bodě 7.8.2.1. Během cyklu RMC musí být motor soustavně regulován řídicí jednotkou zkušebního stavu. Plynné emise a emise částic se musí měřit a zachycovat kontinuálně v průběhu cyklu RMC, a to stejným způsobem jako při zkušebních cyklech v neustáleném stavu (NRTC nebo LSI-NRTC).

Cyklus RMC má sloužit jako metoda provedení zkoušky v ustáleném stavu způsobem napodobujícím provedení v neustáleném stavu. Každý cyklus RMC obsahuje řadu režimů v ustáleném stavu s lineárními přechody mezi nimi. Relativní celkový čas v každém režimu a jemu předcházející přechod odpovídá vážení cyklu NRSC s diskrétními režimy. Změna otáček a zatížení motoru z jednoho režimu k následujícímu musí být řízena, aby probíhala lineárně v době 20 ±1 s. Doba změny režimu tvoří část nového režimu (i u prvního režimu). V některých případech se režimy neprovádějí ve stejném pořadí jako cyklus NRSC s diskrétními režimy nebo se dělí, aby se předešlo extrémním změnám teploty.

7.4.2.   Zkušební cykly v neustáleném stavu (NRTC a LSI-NRTC)

Nesilniční cyklus v neustáleném stavu pro motory kategorie NRE (NRTC) a nesilniční cyklus v neustáleném stavu pro velkoobjemové zážehové motory kategorie NRS (LSI-NRTC) jsou specifikovány v dodatku 3 přílohy XVII jako po sekundách se měnící sled normalizovaných hodnot otáček a točivého momentu. Před zkouškou motoru na zkušebním stanovišti musí být normalizované hodnoty převedeny na ekvivalentní referenční hodnoty pro konkrétní zkoušený motor na základě specifických hodnot otáček a točivého momentu zjištěných z křivky mapování motoru. Tento převod se označuje jako denormalizace a zkušební cyklus takto vytvořený je referenční zkušební cyklus NRTC nebo LSI-NRTC motoru, který má být zkoušen (viz bod 7.7.2).

7.4.2.1.   Sled zkoušky pro NRTC

Plán normalizovaného cyklu NRTC na dynamometru je graficky znázorněn na obrázku 6.3.

Obrázek 6.3

Plán normalizovaného cyklu NRTC na dynamometru

Image

Po dokončení stabilizace (viz bod 7.3.1.1.1) se cyklus NRTC provede dvakrát podle tohoto postupu:

a)

start za studena poté, co se motor a systémy následného zpracování výfukových plynů ochladily na teplotu místnosti po přirozeném ochladnutí motoru, nebo start za studena po nuceném ochlazení a poté, co se teploty motoru a chladiva, systémy následného zpracování výfukových plynů a všechna řídicí zařízení motoru stabilizovaly na teplotě mezi 293 K a 303 K (20 °C a 30 °C). Měření emisí se startem za studena začíná s nastartováním studeného motoru;

b)

odstavení za tepla začne bezprostředně po ukončení fáze se startem za studena. Motor se vypne a odstavením na dobu 20 minut ±1 minuta se připraví na provedení zkoušky se startem za tepla;

c)

zkouška se startem za tepla začne bezprostředně po fázi odstavení roztočením motoru. Analyzátory plynu se zapnou nejméně 10 s před koncem doby odstavení, aby se vyloučily špičky signálu zapnutí. Měření emisí začne souběžně se zahájením cyklu NRTC se startem za tepla, tj. včetně roztočení motoru.

Emise specifické pro brzdění (v g/kWh) se určí postupy uvedenými v tomto oddílu pro cyklus NRTC jak se startem za studena, tak za tepla. Složená hodnota vážených emisí se vypočítá vážením výsledků získaných při jízdě se startem za studena faktorem 0,10 a výsledků získaných při jízdě se startem za tepla faktorem 0,90, což je podrobně rozvedeno v příloze VII.

7.4.2.2.   Sled zkoušky pro LSI-NRTC

Po dokončení stabilizace (viz bod 7.3.1.1.2) se cyklus LSI-NRTC provede jednou jako jízda se startem za tepla podle tohoto postupu:

a)

motor se nastartuje a udržuje v chodu prvních 180 sekund zkušebního cyklu, poté pracuje při volnoběžných otáčkách bez zatížení po dobu 30 sekund. Při této zahřívací fázi se emise neměří.

b)

Po uplynutí 30sekundové fáze na volnoběh se zahájí měření emisí a motor provede od začátku celý zkušební cyklus (čas 0 sekund).

Emise specifické pro brzdění (v g/kWh) se určí postupy uvedenými v příloze VII.

Byl-li motor v chodu již před zkouškou, podle osvědčeného technického úsudku se nechá dostatečně vychladnout, aby změřené emise přesně představovaly emise při startu motoru za pokojové teploty. Pokud se například motor po nastartování za pokojové teploty za tři minuty zahřeje natolik, aby začal pracovat v uzavřeném okruhu a katalyzátor pracoval naplno, je třeba před zahájením další zkoušky motor vychladit jen minimálně.

S předchozím souhlasem technické zkušebny může zahřívací fáze motoru zahrnovat až 15 minut provozu během zkušebního cyklu.

7.5.   Obecný sled zkoušek

Pro změření emisí motoru je nutné provést tyto kroky:

a)

určit zkušební otáčky a zkušební zatížení motoru pro motor, který se má zkoušet, a to změřením maximálního točivého momentu (motory s konstantními otáčkami) nebo křivky maximálního točivého momentu (motory s proměnnými otáčkami) jako funkci otáček motoru;

b)

denormalizovat normalizované zkušební cykly točivým momentem (motory s konstantními otáčkami) nebo otáčkami a točivým momentem (motory s proměnnými otáčkami), které byly zjištěny podle předchozího bodu 7.5 písm. a);

c)

předem připravit motor, zařízení a měřicí přístroje pro nadcházející zkoušku emisí nebo sérii zkoušek (jízda se startem za studena a se startem za tepla);

d)

vykonat postupy před zkouškou, aby se ověřila správná činnost konkrétních zařízení a analyzátorů. Je nutné provést kalibraci všech analyzátorů. Musí se zaznamenat všechny údaje zjištěné před zkouškou;

e)

nastartovat na začátku zkušebního cyklu motor (NRTC) nebo jej ponechat v běhu (cykly v ustáleném stavu a LSI-NRTC) a souběžně nastartovat systémy pro odběr vzorků;

f)

měřit nebo zaznamenávat emise a ostatní požadované parametry v průběhu doby odběru vzorků (v případě NRTC, LSI-NRTC a RMC v průběhu celého zkušebního cyklu);

g)

provést postupy po zkoušce, aby se ověřila správná činnost konkrétních zařízení a analyzátorů;

h)

stabilizovat filtr (filtry) částic, zvážit je (hmotnost prázdného filtru), zaplnit, opět stabilizovat, opět zvážit (hmotnost naplněného filtru) a následně vyhodnotit vzorky v souladu s postupy před zkouškou (bod 7.3.1.5) a postupy po zkoušce (bod 7.3.2.2);

i)

vyhodnotit výsledky zkoušky emisí.

Obrázek 6.4 znázorňuje přehled postupů, které jsou nutné k vykonání zkušebních cyklů s měřením emisí motorů z výfuku pro nesilniční mobilní stroje.

Obrázek 6.4

Sled zkoušek

Image

7.5.1.   Startování a opakované startování motoru

7.5.1.1.   Start motoru

Motor se nastartuje:

a)

v souladu s doporučením v pokynech pro uživatele sériovým startérem motoru nebo vzduchovým startovacím systémem, a to buď s přiměřeně nabitou baterií, s vhodným zdrojem energie nebo s vhodným zdrojem tlakového vzduchu; nebo

b)

dynamometrem k roztočení motoru, dokud se motor nenastartuje. V typickém případě roztáčením v rozmezí ±25 % typických otáček motoru při startování ve skutečném provozu, nebo lineárně vzrůstajícími otáčkami dynamometru od nuly do otáček, které jsou o 100 min– 1 nižší, než jsou dolní otáčky volnoběhu, avšak jen do okamžiku, kdy je motor nastartován.

Roztáčení se musí ukončit do 1 sekundy po nastartování motoru. Nenastartuje-li motor po 15 sekundách roztáčení, přeruší se roztáčení a určí se příčina selhání startu, kromě případu, kdy pokyny pro uživatele nebo příručka pro údržbu a opravy uvádí, že delší doba roztáčení je normální.

7.5.1.2.   Zastavení motoru

a)

pokud se motor kdykoli v průběhu provádění cyklu NRTC se startem za studena zastaví, je zkouška neplatná.

b)

pokud se motor kdykoli v průběhu provádění cyklu NRTC se startem za tepla zastaví, je zkouška neplatná. Motor se odstaví podle bodu 7.4.2.1 písm. b) a jízda se startem za tepla se zopakuje. V tomto případě se jízda se startem za studena nemusí opakovat;

c)

Jestliže se motor kdykoli v průběhu cyklu LSI-NRTC zastaví, je zkouška neplatná.

d)

Zastaví-li se motor kdykoliv během cyklu NRTC (s diskrétními nebo s lineárními přechody mezi režimy), je zkouška neplatná a musí se opakovat od postupu zahřátí motoru. V případě měření PM metodou více filtrů (jeden odběrný filtr pro každý pracovní režim) pokračuje zkouška stabilizací motoru v předchozím režimu, aby došlo ke stabilizaci teploty motoru a poté bylo zahájeno měření s režimem, při kterém se motor zastavil.

7.5.1.3   Provoz motoru

Operátorem muže být osoba (tj. ruční vstup), nebo regulátor (tj. automatický vstup), které mechanicky nebo elektronicky signalizují vstup, kterým se požaduje výstup motoru. Vstup se může uskutečnit pedálem nebo signálem akcelerátoru, pákou nebo signálem ovládání škrticí klapky, pákou nebo signálem ovládání dodávky paliva, pákou nebo signálem ovládání otáček, nebo nastavením nebo signálem regulátoru.

7.6.   Mapování motoru

Před zahájením mapování motoru se motor musí zahřát a na konci zahřívání musí být v provozu nejméně po 10 minut při maximálním výkonu, případně podle doporučení výrobce a osvědčeného technického úsudku, aby došlo ke stabilizaci teploty chladiva a mazacího oleje motoru. Po stabilizaci motoru se vytvoří mapa vlastností motoru.

Hodlá-li výrobce při monitorovacích zkouškách v provozu podle nařízení v přenesené pravomoci (EU) 2017/655 o monitorování emisí motorů v provozu využít signálu točivého momentu vysílaného elektronickou řídicí jednotkou, u motorů disponujících touto funkcí, musí se během mapování motoru navíc provést ověření stanovené v dodatku 3.

S výjimkou motorů s konstantními otáčkami se mapování motoru provádí se zcela otevřenou pákou přípusti paliva nebo s regulátorem, který používá diskrétní otáčky ve vzestupném pořadí. Minimální a maximální mapovací otáčky jsou definovány takto:

Minimální otáčky pro mapování

=

volnoběžné otáčky za tepla

Maximální otáčky pro mapování

=

n hi × 1,02 nebo otáčky, při kterých maximální točivý moment klesne na nulu, podle toho, které z nich jsou nižší,

kde:

n hi jsou vysoké otáčky podle definice v čl. 2 odst. 12.

Nejsou-li nejvyšší otáčky bezpečné nebo reprezentativní (např. u motorů bez regulátoru), použije se k mapování až do maximálních bezpečných otáček nebo reprezentativního maxima osvědčený technický úsudek.

7.6.1.   Mapování motoru pro cyklus NRSC s proměnnými otáčkami

V případě mapování motoru pro cyklus NRSC s proměnnými otáčkami (pouze pro motory, s nimiž se nemusí provádět cyklus NRTC nebo LSI-NRTC) se k výběru dostatečného počtu rovnoměrně rozložených bodů nastavení použije osvědčený technický úsudek. V každém bodě nastavení se otáčky stabilizují a točivý moment se nechá stabilizovat nejméně po dobu 15 sekund. U každého bodu nastavení se zaznamenají střední otáčky a točivý moment. Střední otáčky a točivý moment se doporučuje vypočíst z údajů zaznamenaných během posledních 4 až 6 sekund. V případě potřeby se k určení zkušebních otáček a točivých momentů u cyklu NRSC použije lineární interpolace. Mají-li být motory podrobeny rovněž cyklu NRTC nebo LSI-NRTC, pak se k určení otáček a točivých momentů u zkoušky v ustáleném stavu použije mapovací křivka motoru NRTC.

Výrobce se může rozhodnout, že mapování motoru případně provede postupem podle bodu 7.6.2.

7.6.2.   Mapování motoru pro cyklus NRTC a LSI-NRTC

Mapování motoru se provádí podle následujícího postupu:

a)

motor se odlehčí a běží při volnoběžných otáčkách;

i)

v případě motorů s regulátorem dolních otáček se požadavek operátora nastaví na minimum, dynamometr nebo jiné zatěžovací zařízení se použije k dosažení hodnoty nula točivého momentu na základním výstupním hřídeli motoru a motoru se se musí umožnit regulovat otáčky. Tyto volnoběžné otáčky zahřátého motoru se změří,

ii)

v případě motorů bez regulátoru dolních otáček se dynamometr nastaví k dosažení hodnoty nula točivého momentu na základním výstupním hřídeli motoru, a požadavek operátora se nastaví tak, aby reguloval otáčky na jejich nejnižší možnou hodnotu udávanou výrobcem při minimálním zatížení (rovněž známy jako volnoběžné otáčky zahřátého motoru udávané výrobcem),

iii)

volnoběžný točivý moment udávaný výrobcem se může použít pro všechny motory s proměnnými otáčkami (s regulátorem dolních otáček či bez něj), je-li pro skutečný provoz reprezentativní točivý moment nenulové hodnoty při volnoběhu;

b)

požadavek operátora se nastaví na maximum a otáčky motoru se nařídí, aby byly mezi volnoběžnými otáčkami zahřátého motoru a 95 % jejich hodnoty. V případě motorů s referenčními zkušebními cykly, u nichž jsou nejnižší otáčky vyšší než volnoběžné otáčky zahřátého motoru, může být mapování zahájeno při hodnotě mezi nejnižšími referenčními otáčkami a 95 % hodnoty nejnižších referenčních otáček;

c)

otáčky motoru se zvyšují při střední rychlostí 8 ± 1 min– 1/s nebo se motor mapuje plynulým zvyšováním otáček při konstantní rychlosti tak, aby proběh od minimálních do maximálních mapovacích otáček byl 4 až 6 minut. Rozsah mapovacích otáček musí počínat mezi volnoběžnými otáčkami zahřátého motoru a 95 % jejich hodnoty a končit nejvyššími otáčkami nad hodnotou otáček maximálního výkonu, při nichž má výkon hodnotu méně než 70 % maximálního výkonu. Nejsou-li tyto nejvyšší otáčky bezpečné nebo reprezentativní (např. u motorů bez regulátoru), použije se k mapování až do maximálních bezpečných otáček nebo reprezentativního maxima osvědčený technický úsudek. Body otáček motoru a točivého momentu se zaznamenávají s frekvencí alespoň 1 Hz;

d)

má-li výrobce za to, že výše uvedená metoda mapování není pro určitý motor bezpečná nebo mu neodpovídá, mohou být použity alternativní metody mapování. Tyto alternativní metody musí splňovat záměr vymezených mapovacích postupů k určení maximálního točivého momentu dosažitelného při všech otáčkách motoru, kterých je dosaženo v průběhu zkušebních cyklů. Odchylky od metod mapování uvedených v tomto oddíle musí být z důvodů spolehlivosti nebo reprezentativnosti schváleny schvalovacím orgánem zároveň se zdůvodněním jejich použití. V případě regulovaných motorů nebo u motorů přeplňovaných turbodmychadlem se však v žádném případě nesmí pro křivku točivého momentu použít sestupné změny otáček motoru;

e)

motor není nutné mapovat před každým jednotlivým zkušebním cyklem. Motor je nutné znovu zmapovat, pokud:

i)

podle osvědčeného technického úsudku uplynula neúměrně dlouhá doba od posledního mapování, nebo

ii)

byly na motoru vykonány mechanické změny nebo následná kalibrování, které mohou mít vliv na výkon motoru, nebo

iii)

atmosférický tlak v blízkosti sání vzduchu do motoru není v rozmezí ±5 kPa od hodnoty v době posledního mapování motoru.

7.6.3.   Mapování motorů s konstantními otáčkami pro cyklus NRSC

Motor může být provozován se sériovým regulátorem konstantních otáček nebo lze pomocí regulace otáček motoru systémem regulace pracujícím podle požadavku operátora simulovat regulátor konstantních otáček. Musí se použít buď izochronní regulátor, nebo případně regulátor nastavený na trvalou odchylku otáček.

7.6.3.1.   Kontrola jmenovitého výkonu u motorů zkoušených v cyklu D2 nebo E2

Provede se tato kontrola:

a)

s regulátorem nebo se simulovaným regulátorem řídícím otáčky podle požadavku operátora se motor při jmenovitých otáčkách a jmenovitém výkonu provozuje po dobu, která je nutná k dosažení stabilního chodu;

b)

točivý moment se zvyšuje do okamžiku, kdy motor přestane být schopen udržovat regulované otáčky. Výkon dosažený v tomto bodě se zaznamená. V závislosti na vlastnostech regulátoru se před provedením této kontroly výrobce dohodne s technickou zkušebnou, která kontrolu provádí, na metodě, jejíž pomocí bude možné s jistotou určit, kdy se uvedeného bodu dosáhlo. Výkon zaznamenaný v písmenu b) nesmí překročit jmenovitý výkon podle definice v čl. 3 odst. 25 nařízení (EU) 2016/1628 o více než 12,5 %. Byla-li tato hodnota překročena, musí výrobce upravit deklarovaný jmenovitý výkon.

Jestliže konkrétní motor nemůže být této kontrole podroben, neboť hrozí poškození motoru nebo dynamometru, musí výrobce schvalovacímu orgánu předložit solidní důkazy o tom, že maximální výkon nepřekračuje jmenovitý výkon o více než 12,5 %.

7.6.3.2.   Postup mapování pro cyklus NRSC s konstantními otáčkami

a)

s regulátorem nebo se simulovaným regulátorem řídícím otáčky podle požadavku operátora se motor provozuje bez zatížení při regulovaných otáčkách (a to při horních otáčkách, nikoli dolních volnoběžných otáčkách) po dobu nejméně 15 sekund, ledaže konkrétní motor není tohoto úkonu schopen;

b)

ke zvyšování točivého momentu konstantní rychlostí se použije dynamometr. Mapování je nutné provést tak, aby průběh od otáček regulovaných pro stav bez zatížení k točivému momentu odpovídajícímu jmenovitému výkonu u motorů zkoušených podle cyklu D2 nebo E2 nebo maximálnímu točivému momentu v případě jiných zkušebních cyklů s konstantními otáčkami trval alespoň 2 minuty. Během mapování motoru se skutečné otáčky a točivý moment zaznamenávají s frekvencí nejméně 1 Hz;

c)

V případě motoru s konstantními otáčkami s regulátorem, který umožňuje nastavení alternativních otáček, se motor zkouší při každém použitelném nastavení konstantních otáček.

V případě motorů s konstantními otáčkami se při použití jiných metod k záznamu točivého momentu a výkonu při stanovených provozních otáčkách postupuje podle osvědčeného technického úsudku a ve shodě se schvalovacím orgánem.

U motorů zkoušených podle jiných cyklů než D2 nebo E2, kdy jsou k dispozici naměřené i deklarované hodnoty maximálního točivého momentu, lze místo naměřené hodnoty použít hodnotu deklarovanou, jestliže je v rozmezí 95 až 100 % naměřené hodnoty.

7.7.   Generování zkušebního cyklu

7.7.1.   Generování cyklu NRSC

Ustanovení tohoto bodu se použijí k vygenerování otáček a zatížení motoru, s nimiž musí motor pracovat při zkouškách v ustáleném stavu s cyklem NRSC s diskrétními režimy nebo cyklem RMC.

7.7.1.1.   Generování zkušebních otáček u cyklu NRSC pro motory zkoušené jak podle cyklu NRSC, tak i podle cyklu NRTC nebo LSI-NRTC

U motorů, které se kromě cyklu NRSC zkouší i podle cyklu NRTC nebo LSI-NRTC, se jako 100 % otáček musí použít maximální zkušební otáčky uvedené v bodě 5.2.5.1, a to jak pro zkoušky v neustáleném, tak ustáleném stavu.

Při určování mezilehlých otáček podle bodu 5.2.5.4 se namísto jmenovitých otáček použijí maximální zkušební otáčky.

Volnoběžné otáčky se určí podle bodu 5.2.5.5.

7.7.1.2.   Generování zkušebních otáček u cyklu NRSC pro motory zkoušené pouze podle cyklu NRSC

U motorů, které se nezkouší ve zkušebním cyklu v neustáleném stavu (NRTC nebo LSI-NRTC), se jako 100 % otáčky použijí jmenovité otáčky uvedené v bodě 5.2.5.3.

K určení volnoběžných otáček podle bodu 5.2.5.4 se použijí jmenovité otáčky. Jsou-li pro cyklus NRSC stanoveny dodatečné otáčky vyjádřené procentuálně, vypočítají se jako procento jmenovitých otáček.

Volnoběžné otáčky se určí podle bodu 5.2.5.5.

Po předchozím souhlasu technické zkušebny se k vygenerování zkušebních otáček pro účely tohoto bodu mohou místo jmenovitých použít maximální zkušební otáčky.

7.7.1.3.   Generování zátěže pro každý zkušební režim cyklu NRSC

Procento zatížení se pro každý zkušební režim zvoleného zkušebního cyklu vybere z příslušné tabulky pro cyklus NRSC v dodatku 1 nebo 2 přílohy XVII. V závislosti na zkušebním cyklu je procentuální zatížení v těchto tabulkách vyjádřeno jako výkon nebo točivý moment podle bodu 5.2.6 a v poznámkách pod čarou u každé tabulky.

Hodnotu 100 % při daných zkušebních otáčkách představuje naměřená nebo deklarovaná hodnota převzatá z mapovací křivky vygenerované podle bodu 7.6.1, 7.6.2, případně 7.6.3, vyjádřená jako výkon (kW).

Seřízení motoru pro každý zkušební režim se vypočítá z rovnice (6-14):

Formula

(6-14)

kde:

S

je seřízení dynamometru (kW)

P max

je maximální zjištěný nebo deklarovaný výkon při zkušebních otáčkách a za zkušebních podmínek (podle údajů výrobce) v kW

P AUX

je deklarovaný celkový příkon pomocných zařízení podle definice v rovnici (6-8) (viz bod 6.3.5) při specifikovaných zkušebních otáčkách v kW

L

je procento točivého momentu

Minimální točivý moment zahřátého motoru, reprezentativní pro skutečný provoz, může být deklarován výrobcem a použit pro jakýkoliv zátěžový bod, který by se jinak nacházel pod touto hodnotou, jestliže typ motoru běžně pod touto minimální hodnotou točivého momentu nepracuje, například tehdy, je-li motor připojen k nesilničnímu mobilnímu stroji, který nepracuje pod určitou minimální hodnotou točivého momentu.

U cyklů E2 nebo D2 uvede výrobce jmenovitý výkon, který se při generování zkušebního cyklu použije jako 100 % výkonu.

7.7.2.   Generování otáček a zatížení pro každý ze zkušebních bodů v případě NRTC a LSI-NRTC (denormalizace)

Ustanovení tohoto bodu se použijí k vygenerování odpovídajících otáček a zatížení motoru, s nimiž musí motor pracovat při zkouškách NRTC a LSI-NRTC. Příslušné zkušební cykly v normalizovaném formátu jsou vymezeny v dodatku 3 přílohy XVII. Normalizovaný zkušební cyklus je tvořen sledem dvojic hodnot otáček a procenta točivého momentu.

Normalizované hodnoty otáček a točivého momentu se převedou podle následujících pravidel:

a)

normalizované otáčky se podle bodu 7.7.2.2 převedou do sledu referenčních otáček n ref;

b)

normalizovaný točivý moment je vyjádřen jako procento zmapovaného točivého momentu podle křivky vygenerované podle bodu 7.6.2 při odpovídajících referenčních otáčkách. Tyto normalizované hodnoty se podle bodu 7.7.2.3 převedou do sledu referenčního točivého momentu T ref;

c)

hodnoty referenčních otáček a referenčního točivého momentu v soudržných jednotkách se vynásobí k výpočtu hodnot referenčního výkonu.

7.7.2.1.   Vyhrazeno

7.7.2.2.   Denormalizace otáček motoru

Otáčky motoru se převedou z normalizovaných hodnot pomocí rovnice (6-15):

Formula

(6-15)

kde:

n ref

jsou referenční otáčky

MTS

jsou maximální zkušební otáčky

n idle

jsou volnoběžné otáčky

%speed

je hodnota normalizovaných otáček pro NRTC nebo LSI-NRTC převzatá z dodatku 3 přílohy XVII.

7.7.2.3.   Denormalizace točivého momentu motoru

Hodnoty točivého momentu v plánu průběhu zkoušky s motorem na dynamometru v dodatku 3 přílohy XVII jsou normalizované podle maximálního točivého momentu při příslušných otáčkách. Hodnoty točivého momentu referenčního cyklu se musí pomocí rovnice (6-16) převést z normalizovaného stavu s využitím mapovací křivky určené podle bodu 7.6.2:

Formula

(6-16)

pro příslušné referenční otáčky určené podle bodu 7.7.2.2,

kde:

T ref

je referenční točivý moment při příslušných referenčních otáčkách

max.torque

je maximální točivý moment při příslušných zkušebních otáčkách získaný z mapování motoru provedeného podle bodu 7.6.2 a v případě potřeby upravený podle bodu 7.7.2.3.1.

%torque

je hodnota normalizovaného točivého momentu pro NRTC nebo LSI-NRTC převzatá z dodatku 3 přílohy XVII.

a)   Deklarovaný minimální točivý moment

Minimální točivý moment, reprezentativní pro skutečný provoz, může být deklarován výrobcem. Typicky např. je-li motor připojen k nesilničnímu mobilnímu stroji, který nepracuje pod určitou minimální hodnotou točivého momentu, může být tento točivý moment deklarován a použit pro jakýkoliv zátěžový bod, který by jinak byl pod touto hodnotou.

b)   Úprava točivého momentu motoru v důsledku pomocných zařízení namontovaných pro zkoušku emisí

Jsou-li namontována pomocná zařízení podle dodatku 2, neprovádí se žádná úprava maximálního točivého momentu při příslušných zkušebních otáčkách získaného z mapování motoru provedeného podle bodu 7.6.2.

V případech, kdy podle bodů 6.3.2 nebo 6.3.3 nejsou namontována pomocná zařízení, která ke zkoušce namontována být měla, nebo jsou naopak namontována pomocná zařízení, která měla být při zkoušce odmontována, se hodnota T max upraví pomocí rovnice (6-17).

T max = T mapT AUX

(6-17)

přičemž:

TAUX = Tr – Tf

(6-18)

kde:

T map

je neupravený maximální točivý moment při příslušných zkušebních otáčkách získaný z mapování motoru provedeného podle bodu 7.6.2

T f

je točivý moment požadovaný k pohonu pomocných zařízení, která měla být namontována, avšak ke zkoušce namontována nebyla

T r

je točivý moment požadovaný k pohonu pomocných zařízení, která měla být odmontována, při zkoušce však byla namontována

7.7.2.4.   Příklad postupu denormalizace

Jako příklad se denormalizují tyto zkušební body:

 

% speed = 43 %

 

% torque = 82 %

Pokud jsou dány hodnoty:

 

MTS = 2 200 min– 1

 

n idle = 600 min– 1

z toho vyplývá

Formula

Při maximálním točivém momentu 700 Nm zjištěném z mapovací křivky při otáčkách 1 288 min– 1.

Formula

7.8.   Postup konkrétních zkušebních cyklů

7.8.1.   Sled zkoušky emisí pro cyklus NRSC s diskrétními režimy

7.8.1.1.   Zahřátí motoru pro cyklus NRSC v ustáleném stavu s diskrétními režimy NRSC

Provede se postup před zkouškou podle bodu 7.3.1, včetně kalibrace analyzátoru. Motor se zahřeje pomocí stabilizace podle bodu 7.3.1.1.3. Měření ve zkušebním cyklu začíná bezprostředně od tohoto bodu stabilizace motoru.

7.8.1.2.   Provedení cyklu NRSC s diskrétními režimy

a)

Zkouška musí být provedena v pořadí čísel režimů, jak je stanoveno výše pro zkušební cyklus (viz dodatek 1 přílohy XVII).

b)

Každý režim trvá nejméně 10 minut, s výjimkou zkoušení zážehových motorů v cyklech G1, G2 nebo G3, kdy každý režim trvá nejméně 3 minuty. V každém režimu se motor stabilizuje po dobu nejméně 5 minut a emise se odebírají po dobu 1 až 3 minut v případě plynných emisí a, je-li stanovena mezní hodnota, počtu částic na konci každého režimu, s výjimkou zkoušení zážehových motorů v cyklech G1, G2 nebo G3, kdy se emise odebírají alespoň během posledních 2 minut příslušného zkušebního režimu. V zájmu větší přesnosti odběru vzorků lze dobu odběru vzorků částic prodloužit.

Doba zkušebních režimů se musí zaznamenat a uvést v protokolu.

c)

Odběr vzorků částic lze provádět metodou jediného filtru nebo metodou více filtrů. Protože výsledky těchto metod se mohou poněkud lišit, uvede se spolu s výsledky i použitá metoda.

Při metodě jediného filtru se musí při odběru vzorků vzít v úvahu váhové faktory pro jednotlivé režimy uvedené v postupu zkušebního cyklu a skutečný průtok výfukového plynu tím, že se odpovídajícím způsobem seřídí průtok vzorku nebo doba odběru. Je nutné, aby efektivní váhový faktor odběru vzorku částic byl v rozmezí ±0,005 od váhového faktoru příslušného režimu;

Odběr se musí provést v každém režimu co nejpozději. U metody jediného filtru se ukončení odběru vzorku částic musí časově shodovat v rozmezí ±5 sekund s ukončením měření plynných emisí. Odběr vzorků trvá v každém režimu při metodě jediného filtru nejméně 20 sekund a při metodě více filtrů nejméně 60 sekund. U systémů bez obtoku trvá odběr vzorků u každého režimu při metodě jediného filtru i metodě více filtrů nejméně 60 sekund.

d)

Otáčky a zatížení motoru, teplota nasávaného vzduchu, průtok paliva a případně průtok vzduchu nebo výfukového plynu se měří v každém režimu ve stejném časovém intervalu, v němž se měří koncentrace plynných složek.

Zaznamenají se všechny další údaje nutné pro výpočty.

e)

Pokud se motor zastaví nebo je přerušen odběr vzorku emisí kdykoliv po začátku odběru vzorků emisí pro cyklus NRSC s diskrétními režimy a metodu jediného filtru, je zkouška neplatná a musí se opakovat, a to od zahřátí motoru. V případě měření PM metodou více filtrů (jeden odběrný filtr pro každý pracovní režim) pokračuje zkouška stabilizací motoru v předchozím režimu, aby došlo ke stabilizaci teploty motoru a poté bylo zahájeno měření s režimem, při kterém se motor zastavil.

f)

Provede se postup po zkoušce podle bodu 7.3.2.

7.8.1.3.   Kritéria potvrzení platnosti

Po počáteční přechodné periodě v průběhu každého režimu zkušebního cyklu s ustálenými stavy se naměřené otáčky nesmí odchylovat od referenčních otáček o ± 1 % jmenovitých otáček nebo ± 3 min– 1, podle toho, která hodnota je větší, s výjimkou volnoběžných otáček, u nichž se musí dodržet dovolené odchylky udané výrobcem. Naměřený točivý moment se nesmí odchýlit od referenčního točivého momentu o více než ± 2 % maximálního točivého momentu při zkušebních otáčkách.

7.8.2.   Sled zkoušky emisí pro cyklus RMC

7.8.2.1.   Zahřátí motoru

Provede se postup před zkouškou podle bodu 7.3.1, včetně kalibrace analyzátoru. Motor se zahřeje stabilizací podle bodu 7.3.1.1.4. Bezprostředně poté, co se motor takto stabilizoval, přecházejí otáčky a točivý moment lineárním přechodem v trvání 20 ±1 sekunda do prvního režimu zkoušky, pokud již nejsou jejich hodnoty na první režim zkoušky nastaveny. V rozmezí 5 až 10 sekund od ukončení přechodu musí být zahájeno měření ve zkušebním cyklu.

7.8.2.2.   Provedení cyklu RMC

Zkouška musí být provedena v pořadí čísel režimů, jak je pro zkušební cyklus stanoveno výše (viz dodatek 2 přílohy XVII). Není-li pro daný cyklus NRSC k dispozici žádný cyklus RMC, použije se postup pro cyklus NRSC s diskrétními režimy podle bodu 7.8.1.

V každém režimu je motor v provozu po předepsanou dobu. Přechod z jednoho režimu do následujícího je lineární za dobu 20 ±1 sekunda, s dovolenými odchylkami podle bodu 7.8.2.4.

V případě cyklu RMC se generují hodnoty referenčních otáček a točivého momentu s minimální frekvencí 1 Hz a tento sled bodů se použije k provedení cyklu. Během přechodu mezi režimy se denormalizované referenční hodnoty otáček a točivého momentu lineárně mění, a tím generují referenční body. Normalizované referenční hodnoty točivého momentu se nesmí měnit lineárně mezi režimy a poté denormalizovat. Pokud přechod otáček a točivého momentu prochází bodem nad křivkou točivého momentu motoru, pokračuje se k dosažení referenčních hodnot točivých momentů, přičemž je přípustné, aby požadavek operátora dosáhl maxima.

Během celého cyklu RMC (během každého režimu i během přechodů mezi režimy) se měří koncentrace každé plynné znečišťující látky a odebírají se vzorky částic PM a PN, je-li pro ně stanovena mezní hodnota. Plynné znečišťující látky lze měřit v surovém či ve zředěném stavu a zaznamenávat kontinuálním způsobem; jsou-li ve zředěném stavu, lze je odebírat do jímacího vaku. Vzorek částic se zředí stabilizovaným a čistým vzduchem. V průběhu celého postupu zkoušky se odebere jeden vzorek a v případě částic se zachytí jedním vhodným filtrem pro odběr částic.

K provedení výpočtu emisí specifických pro brzdění se vypočte skutečná práce cyklu integrováním skutečného výkonu motoru během celého cyklu.

7.8.2.3.   Sled zkoušek emisí

a)

provedení RMC, odběr vzorků výfukového plynu, záznam údajů a integrace naměřených hodnot se musí zahájit souběžně;

b)

otáčky a točivý moment jsou regulovány do prvního režimu zkušebního cyklu;

c)

pokud se motor kdykoli v průběhu provádění RMC zastaví, je zkouška neplatná. Musí se provést nová stabilizace motoru a zkouška znovu opakovat;

d)

na konci RMC pokračuje odběr vzorků, s výjimkou odběru vzorku částic, a všechny systémy jsou v provozu, aby se poskytl čas na odezvu systému. Následně se veškerý odběr vzorků a záznamů zastaví, včetně záznamu vzorků pozadí. Pak se zastaví všechna integrační zařízení a v záznamu údajů se vyznačí konec zkušebního cyklu;

e)

Provede se postup po zkoušce podle bodu 7.3.2.

7.8.2.4.   Kritéria potvrzení platnosti

Správnost zkoušek RMC musí být potvrzena regresní analýzou, jak je popsáno v bodech 7.8.3.3 a 7.8.3.5. Dovolené odchylky RMC obsahuje následující tabulka 6.1. Je třeba si uvědomit, že mezní odchylky pro RMC se liší od mezních odchylek pro NRTC v tabulce 6.2. Při zkoušení motorů s netto výkonem vyšším než 560 kW lze použít dovolené odchylky regresní přímky z tabulky 6.2 a vypustit body podle tabulky 6.3.

Tabulka 6.1

Dovolené odchylky regresní přímky pro RMC

 

Otáčky

Točivý moment

Výkon

Směrodatná chyba odhadu (SEE) y v závislosti na x

nejvýše 1 % jmenovitých otáček

nejvýše 2 % maximálního točivého momentu motoru

nejvýše 2 % maximálního výkonu motoru

Sklon regresní přímky, a 1

0,99 – 1,01

0,98 – 1,02

0,98 – 1,02

Koeficient určení, r 2

nejméně 0,990

nejméně 0,950

nejméně 0,950

pořadnice regresní přímky s osou y, a 0

±1 % jmenovitých otáček

±20 Nm nebo ±2 % max. točivého momentu, podle toho, která hodnota je větší

±4 kW nebo 2 % max. výkonu, podle toho, která hodnota je větší

Pokud se zkouška RMC neprovádí na zkušebním stavu určeném pro zkoušky s přechodnými stavy, ale na zařízení, které nedává po sekundách měnící se hodnoty otáček a točivého momentu, použijí se tato kritéria ověření správnosti.

Požadavky na dovolené odchylky otáček a točivého momentu pro každý režim uvádí bod 7.8.1.3. V případě lineárních přechodů otáček a točivého momentu mezi režimy v trvání 20 sekund u zkoušky RMC s ustálenými stavy (bod 7.4.1.2) se pro přechod otáček a zatížení použijí tyto mezní odchylky.

(a)

otáčky se musí udržovat lineární v rozmezí ±2 % jmenovitých otáček;

(b)

točivý moment se musí udržovat lineární v rozmezí ±5 % maximálního točivého momentu při jmenovitých otáčkách.

7.8.3.   Zkušební cykly v neustáleném stavu (NRTC a LSI-NRTC)

Cykly NRTC a LSI-NRTC se provádí sekvenčním vykonáváním příkazů pro referenční otáčky a točivé momenty. Příkazy pro otáčky a točivé momenty se vydávají s frekvencí nejméně 5 Hz. Jelikož má referenční zkušební cyklus specifikaci pro frekvenci 1 Hz, mezilehlé hodnoty mezi příkazy pro otáčky a točivé momenty se lineárně interpolují z hodnot referenčního točivého momentu generovaných z generování cyklu.

Nízké hodnoty denormalizovaných otáček v blízkosti volnoběžných otáček zahřátého motoru mohou způsobit aktivaci regulátoru dolních volnoběžných otáček a překročení hodnot referenčního točivého momentu, přestože požadavkem operátora je minimum. V těchto případech se doporučuje ovládat dynamometr tak, aby prioritně sledoval referenční točivý moment místo referenčních otáček a regulaci otáček ponechal na motoru.

V případě startu za studena mohou motory používat zařízení zvyšující volnoběžné otáčky za účelem rychlého zahřátí motoru a systém následného zpracování výfukových plynů. Za těchto podmínek velmi nízké normalizované otáčky generují referenční otáčky, které jsou pod těmito zvýšenými volnoběžnými otáčkami. V těchto případech se doporučuje ovládat dynamometr tak, aby prioritně sledoval referenční točivý moment místo referenčních otáček a, když je požadavek operátora minimum, regulaci otáček ponechal na motoru.

Během zkoušky emisí se referenční otáčky a točivé momenty a naměřené otáčky a točivé momenty zaznamenávají s minimální frekvencí 1 Hz, přednostně však s frekvencí 5 Hz či dokonce 10 Hz. Tato vyšší frekvence záznamu je důležitá, neboť pomáhá minimalizovat zkreslení způsobené časovou prodlevou mezi referenčními a naměřenými hodnotami otáček a točivého momentu.

Referenční a naměřené otáčky a točivé momenty lze zaznamenávat v nižších frekvencích (dokonce 1 Hz), pokud se zaznamenávají průměrné hodnoty v časovém intervalu mezi zaznamenávanými hodnotami. Průměrné hodnoty se vypočítají z naměřených hodnot aktualizovaných s frekvencí nejméně 5 Hz. Tyto zaznamenané hodnoty slouží k výpočtu statistických údajů k ověření správnosti cyklu a celkem vykonané práce.

7.8.3.1.   Provedení zkoušky NRTC

Provedou se postupy před zkouškou podle bodu 7.3.1, včetně stabilizace, vychladnutí a kalibrace analyzátoru.

Zkouška začne takto:

 

Sled zkoušky je v případě NRTC se startem za studena zahájen bezprostředně po nastartování motoru ochlazeného podle bodu 7.3.1.2, nebo v případě NRTC se startem za tepla je zahájen ze stavu odstavení za tepla. Provede se sled podle bodu 7.4.2.1.

 

Záznam údajů, odběr vzorků výfukového plynu a integrace naměřených hodnot se zahájí souběžně s nastartováním motoru. Zkušební cyklus se zahájí při nastartování motoru a provede se podle harmonogramu v dodatku 3 přílohy XVII.

 

Na konci cyklu pokračuje odběr vzorků a všechny systémy jsou v provozu za účelem poskytnutí času na odezvu systému. Následně se veškerý odběr vzorků a záznamů zastaví, včetně záznamu vzorků pozadí. Pak se zastaví všechna integrační zařízení a v záznamu údajů se vyznačí konec zkušebního cyklu.

Provedou se postupy po zkoušce podle bodu 7.3.2.

7.8.3.2.   Provedení zkoušky LSI-NRTC

Provedou se postupy před zkouškou podle bodu 7.3.1, včetně stabilizace a kalibrace analyzátoru.

Zkouška začne takto:

 

Zkouška se zahájí ve sledu uvedeném v bodě 7.4.2.2.

 

Se záznamem údajů, odběrem vzorků výfukového plynu a integrací naměřených hodnot se začne souběžně se zahájením cyklu LSI-NRTC na konci 30sekundové fáze na volnoběh uvedené v bodě 7.4.2.2 písm. b). Zkušební cyklus se provede podle harmonogramu v dodatku 3 přílohy XVII.

 

Na konci cyklu pokračuje odběr vzorků a všechny systémy jsou v provozu za účelem poskytnutí času na odezvu systému. Následně se veškerý odběr vzorků a záznamů zastaví, včetně záznamu vzorků pozadí. Pak se zastaví všechna integrační zařízení a v záznamu údajů se vyznačí konec zkušebního cyklu.

Provedou se postupy po zkoušce podle bodu 7.3.2.

7.8.3.3.   Kritéria ověření platnosti u zkušebních cyklů v neustáleném stavu (NRTC a LSI-NRTC)

Aby se ověřila platnost zkoušky, na referenční a naměřené hodnoty otáček, točivého momentu, výkonu a celkem vykonané práce se použijí kritéria ověření platnosti cyklu uvedená v tomto bodě.

7.8.3.4.   Výpočet práce vykonané v cyklu

Před vypočtením práce vykonané v cyklu se vypustí všechny hodnoty otáček a točivého momentu zaznamenané během startování motoru. Body se zápornými hodnotami točivého momentu se musí započítat jako nulová práce. Skutečná práce v cyklu W act (kWh) se vypočte z naměřených otáček motoru a hodnot točivého momentu. Práce v referenčním cyklu W ref (kWh) se vypočte z referenčních otáček motoru a hodnot točivého momentu. Skutečná práce v cyklu W act slouží k porovnání s prací v referenčním cyklu W ref a k výpočtu emisí specifických pro brzdění (viz bod 7.2).

W act musí být mezi 85 % a 105 % hodnoty W ref.

7.8.3.5.   Statistické ověření (viz dodatek 2 přílohy VII)

U otáček, točivého momentu a výkonu se provede lineární regrese vztahu mezi referenčními a naměřenými hodnotami.

K minimalizování zkreslujícího účinku časové prodlevy mezi hodnotami referenčního cyklu a naměřenými hodnotami se může celý sled zpětnovazebních signálů naměřených otáček a točivého momentu časově posunout před sled referenčních otáček a točivého momentu nebo za něj. Při posunu signálů naměřených hodnot se posunou otáčky a točivý moment ve stejném rozsahu a ve stejném směru.

Použije se metoda nejmenších čtverců s nejvhodnější rovnicí, která má tvar stanovený rovnicí (6-19):

y= a 1 x + a 0

(6-19)

kde:

y

je naměřená hodnota otáček (min– 1), točivého momentu (Nm) nebo výkonu (kW)

a 1

je sklon regresní přímky

x

je referenční hodnota otáček (min– 1), točivého momentu (Nm) nebo výkonu (kW)

a 0

je pořadnice regresní přímky s osou y.

V souladu s dodatkem 3 přílohy VII se pro každou regresní přímku vypočte směrodatná chyba odhadnuté hodnoty (SEE) y v závislosti na x a koeficient určení (r 2).

Doporučuje se provést tuto analýzu při 1 Hz. Aby se zkouška mohla pokládat za platnou, musí splňovat kritéria tabulky 6.2.

Tabulka 6.2

Dovolené odchylky regresní přímky

 

Otáčky

Točivý moment

Výkon

Směrodatná chyba odhadu (SEE) y v závislosti na x

≤ 5,0 % maximálních otáček při zkoušce

≤ 10,0 % maximálního mapovaného točivého momentu

≤ 10,0 % maximálního mapovaného výkonu

Sklon regresní přímky, a 1

0,95 – 1,03

0,83 – 1,03

0,89 – 1,03

Koeficient určení, r 2

nejméně 0,970

nejméně 0,850

nejméně 0,910

pořadnice regresní přímky s osou y, a 0

≤ 10 % volnoběžných otáček

±20 Nm nebo ±2 % max. točivého momentu, podle toho, která hodnota je větší

±4 kW nebo ±2 % max. výkonu, podle toho, která hodnota je větší

Pouze pro potřeby regrese je přípustné vypustit před regresními výpočty některé body, jak je uvedeno v tabulce 6.3. Tyto body však nesmí být vypuštěny při výpočtech práce cyklu a emisí. Bod volnoběhu je definován jako bod s normalizovaným točivým momentem 0 % a normalizovanými otáčkami 0 %. Vypuštění bodu je přípustné použít na celý cyklus nebo jakoukoli jeho část; vypuštěné body se musí specifikovat.

Tabulka 6.3

Přípustná vypuštění bodů z regresní analýzy

Událost

Podmínky (n = otáčky motoru, T = točivý moment)

Přípustná vypuštění bodů měření

Minimální požadavek operátora (bod volnoběhu)

n ref = n idle

a

T ref = 0 %

a

T act > (T ref – 0,02 T maxmappedtorque)

a

T act < (T ref + 0,02 T maxmappedtorque)

otáčky a výkon

Minimální požadavek operátora

n act ≤ 1,02 n ref a T act > T ref

nebo

n act > n ref a T actT ref'

nebo

n act > 1,02 n ref a T ref < T act ≤ (T ref + 0,02 T maxmappedtorque)

výkon a buď točivý moment, nebo otáčky

Maximální požadavek operátora

n act < n ref a T actT ref

nebo

n act ≥ 0,98 n ref a T act < T ref

nebo

n act < 0,98 n ref a T ref > T act ≥ (T ref – 0,02 T maxmappedtorque)

výkon a buď točivý moment, nebo otáčky

8.   Postupy měření

8.1.   Kontroly kalibrace a vlastností

8.1.1.   Úvod

Tento bod popisuje nutné kalibrace a ověření měřicích systémů. Specifikace, které se vztahují k jednotlivým přístrojům, viz bod 9.4.

Jako obecné pravidlo platí, že kalibrace nebo ověření se provedou pro úplný měřicí řetězec.

Nejsou-li kalibrace nebo ověření specifikovány pro část měřicího systému, pak se tato část kalibruje a její vlastnosti se ověřují s četností odpovídající veškerým doporučením výrobce měřicího systému a vyhovující osvědčenému technickému úsudku.

Pro stanovení dovolených odchylek u kalibrace a ověření se použijí mezinárodně známé a uznávané normy.

8.1.2.   Shrnutí kalibrací a ověření

Tabulka 6.4 shrnuje kalibrace a ověření popsaná v oddíle 8 a uvádí, kdy se mají provádět.

Tabulka 6.4

Shrnutí kalibrací a ověření

Druh kalibrace nebo ověření

Minimální četnost (1)

8.1.3: Přesnost, opakovatelnost a šum

Přesnost: nepožaduje se, je však doporučena u počáteční instalace.

Opakovatelnost: nepožaduje se, je však doporučena u počáteční instalace.

Šum: nepožaduje se, je však doporučen u počáteční instalace.

8.1.4: Ověřování linearity

Otáčky: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Točivý moment: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Průtok nasávaného vzduchu, ředicího vzduchu a zředěného výfukového plynu a průtoky odebraných vzorků: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě, pokud není průtok ověřován kontrolou propanem nebo metodou bilance uhlíku nebo kyslíku.

Průtok surového výfukového plynu: při počáteční instalaci, v období 185 dnů před zkoušením a po větší údržbě, pokud není průtok ověřován kontrolou propanem nebo metodou bilance uhlíku nebo kyslíku.

Děliče plynů: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Analyzátory plynů (není-li uvedeno jinak): při počáteční instalaci, v období 35 dnů před zkoušením a po větší údržbě.

Analyzátor FTIR: při instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Váhy na částice: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Nezávislý tlak a teplota: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

8.1.5: Systém pro kontinuální analýzu plynů: odezva a ověření aktualizace – záznam v případě analyzátorů plynu, které nejsou kontinuálně kompenzovány pro jiné druhy plynu

Při počáteční instalaci nebo po změně systému, která by ovlivnila odezvu.

8.1.6: Systém pro kontinuální analýzu plynů: odezva a ověření aktualizace – záznam v případě analyzátorů plynu, které jsou kontinuálně kompenzovány pro jiné druhy plynu

Při počáteční instalaci nebo po změně systému, která by ovlivnila odezvu.

8.1.7.1: Točivý moment

Při počáteční instalaci a po větší údržbě.

8.1.7.2: Tlak, teplota, rosný bod

Při počáteční instalaci a po větší údržbě.

8.1.8.1: Průtok paliva

Při počáteční instalaci a po větší údržbě.

8.1.8.2: Průtok sání

Při počáteční instalaci a po větší údržbě.

8.1.8.3: Průtok výfukového plynu:

Při počáteční instalaci a po větší údržbě.

8.1.8.4: Průtok zředěného výfukového plynu (CVS a PFD)

Při počáteční instalaci a po větší údržbě.

8.1.8.5: CVS/PFD a ověření zařízení k odběru vzorků (2)

Při počáteční instalaci, v období 35 dnů před zkoušením a po větší údržbě. (kontrola propanem)

8.1.8.8: Netěsnost podtlaku

Při instalaci systému pro odběr vzorků. Před každým laboratorním zkoušením podle bodu 7.1: během 8 hodin před začátkem prvního zkušebního intervalu každého zkušebního cyklu a po údržbě, např. po výměnách předsazených filtrů.

8.1.9.1: Rušivý vliv O2 NDIR H2O

Při počáteční instalaci a po větší údržbě.

8.1.9.2: Rušivý vliv CO NDIR CO2 a H2O

Při počáteční instalaci a po větší údržbě.

8.1.10.1: Kalibrace FID

Optimalizace a ověření odezvy FID na uhlovodíky

Kalibrace, optimalizace a určení odezvy CH4: při počáteční instalaci a po větší údržbě.

Ověření odezvy CH4: při počáteční instalaci, v období 185 dnů před zkoušením a po větší údržbě.

8.1.10.2: Rušivý vliv O2 na FID při měření surového výfukového plynu

Pro všechny analyzátory FID: při počáteční instalaci a po větší údržbě.

Pro analyzátory THC FID: při počáteční instalaci, po větší údržbě a

po optimalizaci FID podle bodu 8.1.10.1.

8.1.11.1: Utlumující rušivý vliv CO2 a H2O u CLD

Při počáteční instalaci a po větší údržbě.

8.1.11.3: Rušivý vliv HC a H2O u NDUV

Při počáteční instalaci a po větší údržbě.

8.1.11.4: Penetrace NO2 do chladicí lázně (chladiče)

Při počáteční instalaci a po větší údržbě.

8.1.11.5: Konverze NO2 na NO konvertorem

Při počáteční instalaci, v období 35 dnů před zkoušením a po větší údržbě.

8.1.12.1: Ověření vysoušeče vzorku

Pro termální chladiče: při instalaci a po větší údržbě. Pro osmotické membrány: při instalaci, v období 35 dnů před zkoušením a po větší údržbě.

8.1.13.1: Váhy na částice a vážení

Nezávislé ověření: při počáteční instalaci, v období 370 dnů před zkoušením a po větší údržbě.

Ověření nuly, rozsahu a referenčního vzorku: v průběhu dvanácti hodin předcházejících vážení a po větší údržbě.

8.1.3.   Ověření přesnosti, opakovatelnosti a šumu

Hodnoty vlastností jednotlivých přístrojů uvedených v tabulce 6.8 slouží jako základ k určení přesnosti, opakovatelnosti a šumu jednotlivého přístroje.

Ověření přesnosti, opakovatelnosti a šumu přístroje se nevyžaduje. Může však být užitečné uvážit tato ověření, když se vymezují specifikace pro nový přístroj, ověřují vlastnosti nového přístroje při jeho dodávce, případně odstraňují nedostatky u existujících přístrojů.

8.1.4.   Ověřování linearity

8.1.4.1.   Oblast působnosti a frekvence

U každého měřicího systému uvedeného v tabulce 6.5 se ověřuje linearita nejméně s takovou frekvencí, jaká je uvedena v tabulce, v souladu s doporučeními výrobce měřicího systému a osvědčeným technickým úsudkem. Cílem ověřování linearity je stanovit, že měřicí systém proporcionálně odpovídá požadovanému rozsahu měření. Není-li uvedeno jinak, skládá se ověření linearity ze zanesení série nejméně 10 referenčních hodnot do měřicího systému. Měřicí systém každou referenční hodnotu kvantifikuje. Naměřené hodnoty se kolektivně porovnají s referenčními hodnotami použitím lineární regrese metodou nejmenších čtverců a kritérií linearity v tabulce 6.5.

8.1.4.2.   Požadavky na výkonnost

Nesplňuje-li měřicí systém příslušná kritéria linearity z tabulky 6.5, případné nedostatky se odstraní opětnou kalibrací, opravou, případně výměnou součásti. Po odstranění nedostatků se zopakuje ověření linearity za účelem potvrzení, že měřicí systém vyhovuje kritériím linearity.

8.1.4.3.   Postup

K ověření linearity se použije následující postup:

a)

S měřicím systém se pracuje při pro něj stanovených teplotách, tlacích a průtocích;

b)

Přístroj se vynuluje zavedením nulovacího signálu (jako by byl před zkouškami emisí); pro analyzátory plynu se použije nulovací plyn, který vyhovuje specifikacím bodu 9.5.1, a zavede se přímo do ústí analyzátoru;

c)

Přístroj se kalibruje pro plný rozsah (jako by byl před zkouškami emisí) zavedením signálu plného rozsahu; pro analyzátory plynu se použije nulovací plyn, který vyhovuje specifikacím bodu 9.5.1, a zavede se přímo do ústí analyzátoru;

d)

Po provedení kalibrace přístroje pro plný rozsah se musí zkontrolovat nula stejným signálem, který byl použit u písm. b) tohoto bodu. Použije se osvědčený technický úsudek, aby se na základě údaje o nule určilo, zda je nutné opětovně přístroj vynulovat nebo kalibrovat pro plný rozsah před dalším krokem;

e)

U všech měřených veličin se použijí doporučení výrobce a osvědčený technický úsudek při výběru referenčních hodnot (y ref i ), které pokrývají úplný rozsah hodnot, jež se očekávají během zkoušky emisí, a tudíž nebude nutné za tyto hodnoty extrapolovat. Za jednu z referenčních hodnot ověření linearity se zvolí referenční signál nuly. Pro ověření linearity nezávislého tlaku a teploty se zvolí nejméně tři referenční hodnoty. Pro všechna ostatní ověření linearity se zvolí nejméně deset referenčních hodnot;

f)

Podle doporučení výrobce přístroje a osvědčeného technického úsudku se provede výběr pořadí, ve kterém se bude zavádět série referenčních hodnot;

g)

Referenční veličiny se generují a zavádějí podle bodu 8.1.4.4. Pro analyzátory plynu se použijí koncentrace plynů, o kterých se ví, že vyhovují specifikacím bodu 9.5.1, a zavedou se přímo do ústí analyzátoru;

h)

Přístroji, když měří referenční hodnotu, je nutné poskytnout čas na stabilizaci;

i)

Při frekvenci záznamu odpovídající nejméně minimální frekvenci uvedené v tabulce 6.7 se měří referenční hodnota po dobu 30 sekund a zaznamená se aritmetický průměr

Formula

zaznamenaných hodnot;

j)

Kroky pod písm. g) až i) tohoto bodu se opakují, dokud nejsou změřeny všechny referenční veličiny;

k)

Aritmetické průměry

Formula

a referenční hodnoty y ref i slouží k výpočtu regresních parametrů metodou nejmenších čtverců a statistických hodnot pro porovnání s kritérii minimálních vlastností vymezených v tabulce 6.5. Použijí se výpočty popsané v dodatku 3 přílohy VII.

8.1.4.4.   Referenční signály

Tento bod popisuje doporučené metody pro generování referenčních hodnot pro účely ověřování linearity podle bodu 8.1.4.3. Je nutné použít referenční hodnoty, které simulují skutečné hodnoty, nebo se vloží skutečná hodnota a změří měřicím systémem pro referenční hodnoty. V tomto druhém případě je referenční hodnotou hodnota udaná měřicím systémem pro referenční hodnoty. Referenční hodnoty a měřicí systémy pro referenční hodnoty musí splňovat mezinárodní požadavky.

V případě systémů k měření teplot s čidly, např. termočlánky, odporovým teploměrným zařízením a termistory, lze linearitu ověřit vyjmutím čidla ze systému a použitím simulátoru místo něj. Je nutné použít simulátor, který je nezávisle kalibrován a případně kompenzován studeným spojem. Odchylka simulátoru, který splňuje mezinárodní požadavky, vyjádřená na teplotní stupnici, musí být menší než 0,5 % maximální provozní teploty T max. Zvolí-li se tato možnost, je nutné použít čidla, která mají podle prohlášení dodavatele přesnost lepší než 0,5 % T max ve srovnání s jejich standardní kalibrační křivkou.

8.1.4.5.   Měřicí systémy vyžadující ověření linearity

Tabulka 6.5 uvádí měřicí systémy, u kterých se vyžaduje ověření linearity. Pro tuto tabulku platí následující:

a)

Ověření linearity se provádí častěji, je-li to doporučeno výrobcem nebo vyplývá-li to z osvědčeného technického úsudku;

b)

Výraz „min“ odkazuje na minimální referenční hodnotu použitou v průběhu ověření linearity.

Tato hodnota může být nula nebo záporná hodnota v závislosti na signálu;

c)

Výraz „max“ obecně odkazuje na maximální referenční hodnotu použitou v průběhu ověření linearity. Například u děličů plynu představuje x max koncentraci kalibračního plynu pro plný rozsah, neděleného a nezředěného. Toto jsou zvláštní případy, v nichž výraz „max“ odkazuje na rozdílnou hodnotu:

i)

při ověřování linearity vah na částice odkazuje m max na typickou hmotnost filtru částic,

ii)

při ověření linearity točivého momentu T max odkazuje na vrcholnou hodnotu točivého momentu motoru uvedenou výrobcem u motoru s nejvyšším točivým momentem, který se má zkoušet;

d)

Specifikované rozsahy jsou inkluzivní. Např. specifikovaný rozsah 0,98–1,02 pro sklon a 1 znamená 0,98 ≤ a 1 ≤ 1,02;

e)

Tato ověření linearity se nevyžadují u systémů, u nichž se ověřuje průtok zředěného výfukového plynu podle bodu 8.1.8.5 pro kontrolu propanem, nebo u systémů, které se shodují v rozmezí ± 2 % z hlediska chemické bilance uhlíku nebo kyslíku nasávaného vzduchu, paliva a výfukového plynu;

f)

U těchto veličin se musí splnit kritéria a 1 pouze, pokud je vyžadována absolutní hodnota konkrétní veličiny, na rozdíl od signálu, který je pouze lineárně úměrný skutečné hodnotě;

g)

Mezi nezávislé teploty patří: teploty motoru a podmínky okolí, které se použijí k nastavení nebo ověření podmínek motoru, teploty použité pro nastavení nebo ověření kritických podmínek ve zkušebním systému a teploty použité při výpočtech emisí:

i)

povinné jsou tyto kontroly linearity teploty: nasávání vzduchu, zkušební stav (stavy) pro následné zpracování (v případě motorů zkoušených se systémy následného zpracování výfukových plynů v cyklech se startem za studena), ředicí vzduch pro odběr vzorků částic (CVS, dvojité ředění a systémy s částí toku); odběr vzorků částic a vzorek z chladiče (v případě systémů s odběrem vzorků plynných látek, které používají chladiče k vysoušení vzorků),

ii)

tyto kontroly linearity teploty jsou povinné, pouze pokud je stanoví výrobce motoru: přívod paliva; výstup vzduchu z chladiče přeplňovacího vzduchu zkušební komory (v případě motorů zkoušených s výměníkem tepla pro zkušební komoru simulujícího chladič přeplňovacího vzduchu nesilničního mobilního stroje); přívod chladiva do chladiče přeplňovacího vzduchu zkušební komory (v případě motorů zkoušených s výměníkem tepla pro zkušební komoru simulujícího chladič přeplňovacího vzduchu nesilničního mobilního stroje); a olej v olejové vaně/pánvi; chladivo před termostatem (u motoru chlazených kapalinou);

h)

Mezi nezávislé tlaky patří: tlaky v motoru a podmínky okolí, které se použijí k nastavení nebo ověření podmínek motoru, tlaky použité pro nastavení nebo ověření kritických podmínek ve zkušebním systému a tlaky použité při výpočtech emisí:

i)

povinné jsou tyto kontroly linearity tlaku: škrcení tlaku nasávaného vzduchu, protitlak výfukového plynu: barometr, manometr na vstupu CVS (použije-li se při měření CVS), vzorek z chladiče (v případě systémů s odběrem vzorků plynných látek, které používají chladiče k vysoušení vzorků),

ii)

tyto kontroly linearity tlaku jsou povinné, pouze pokud je stanoví výrobce motoru: přívod chladiva do chladiče přeplňovacího vzduchu zkušební komory (v případě motorů přeplňovaných turbodmychadlem zkoušených s výměníkem tepla pro zkušební komoru simulujícím chladič přeplňovacího vzduchu nesilničního mobilního stroje) a přívod a odvod paliva.

Tabulka 6.5

Měřicí systémy vyžadující ověření linearity

Měřicí systém

Veličina

Minimální frekvence ověřování

Kritéria linearity

Formula

a

SEE

r 2

Otáčky motoru

n

do 370 dnů před zkoušením

≤ 0,05 % n max

0,98–1,02

≤ 2 % n max

≥ 0,990

Točivý moment motoru

T

do 370 dnů před zkoušením

≤ 1 % T max

0,98–1,02

≤ 2 % T max

≥ 0,990

Průtok paliva

qm

do 370 dnů před zkoušením

≤ 1 % qm , max

0,98–1,02

≤ 2 % qm , max

≥ 0,990

Průtok nasávaného vzduchu (1)

qV

do 370 dnů před zkoušením

≤ 1 % qV , max

0,98–1,02

≤ 2 % qV , max

≥ 0,990

Průtok ředicího vzduchu (1)

qV

do 370 dnů před zkoušením

≤ 1 % qV , max

0,98–1,02

≤ 2 % qV , max

≥ 0,990

Průtok zředěného výfukového plynu (1)

qV

do 370 dnů před zkoušením

≤ 1 % qV , max

0,98–1,02

≤ 2 % qV , max

≥ 0,990

Průtok surového výfukového plynu (1)

qV

do 185 dnů před zkoušením

≤ 1 % qV , max

0,98–1,02

≤ 2 % qV , max

≥ 0,990

Průtoky odebraných vzorků (1)

qV

do 370 dnů před zkoušením

≤ 1 % qV , max

0,98–1,02

≤ 2 % qV , max

≥ 0,990

Děliče plynů

x/x span

do 370 dnů před zkoušením

≤ 0,5 % x max

0,98–1,02

≤ 2 % x max

≥ 0,990

Analyzátory plynů

x

do 35 dnů před zkoušením

≤ 0,5 % x max

0,99-1,01

≤ 1 % x max

≥ 0,998

Váhy na částice

m

do 370 dnů před zkoušením

≤ 1 % m max

0,99–1,01

≤ 1 % m max

≥ 0,998

Nezávislé tlaky

p

do 370 dnů před zkoušením

≤ 1 % p max

0,99–1,01

≤ 1 % p max

≥ 0,998

Převod signálů nezávislých teplot z analogových na digitální

T

do 370 dnů před zkoušením

≤ 1 % T max

0,99–1,01

≤ 1 % T max

≥ 0,998

8.1.5.   Systém pro kontinuální analýzu plynů – ověření odezvy a aktualizace záznamů

Tento oddíl popisuje obecný postup ověřování u systému pro kontinuální analýzu plynů z hlediska odezvy a aktualizace záznamů. Pro ověřování u analyzátorů s kompenzací viz bod 8.1.6.

8.1.5.1.   Oblast působnosti a frekvence

Toto ověření se provádí po instalaci nebo výměně analyzátoru plynů používaného pro kontinuální odběr vzorků. Toto ověření se rovněž provádí, pokud je systém znovu nakonfigurován takovým způsobem, že by mohla být změněna jeho odezva. Toto ověření je nutné pro kontinuální analyzátory plynů, používané u zkušebních cyklů v neustáleném stavu (NRTC a LSI-NRTC) nebo cyklu RMC, není však nutné pro systémy analyzátorů plynů pracujících s dávkami nebo pro systémy analyzátorů plynů používané výhradně pro zkoušení pomocí cyklu NRSC s diskrétními režimy.

8.1.5.2.   Principy měření

Tato zkouška ověřuje, že frekvence aktualizace a záznamu odpovídají celkové odezvě systému na rychlé změny hodnot koncentrací v odběrné sondě vzorků. Systémy analyzátorů plynu se optimalizují, aby jejich celková odezva na rychlé změny koncentrace byla aktualizována a zaznamenávala se vhodnou frekvencí zabraňují ztrátě informací. Tato zkouška rovněž ověřuje, že systémy kontinuálních analyzátorů plynu dodržují minimální dobu odezvy.

K vyhodnocení doby odezvy musí být nastavení systému naprosto stejná jako při měření v průběhu zkoušky (tj. tlak, průtoky, nastavení filtrů na analyzátorech a všechny ostatní vlivy na dobu odezvy). Doba odezvy se určí změnou plynu přímo na vstupu odběrné sondy. Zařízení k přepnutí plynu musí být schopno provést přepnutí v době kratší než 0,1 sekundy. Plyny použité ke zkoušce musí vyvolat změnu koncentrace nejméně 60 % plného rozsahu stupnice.

Zaznamená se průběh koncentrace každé jednotlivé složky plynu.

8.1.5.3.   Požadavky na systém

a)

Doba odezvy systému musí být ≤ 10 sekund při době náběhu ≤ 5 sekundy pro všechny složky (CO, NOx, 2 a HC) a všechny použité rozsahy.

Všechny údaje (koncentrace, průtoky paliva a vzduchu) se musí posunout o naměřené doby jejich odezvy před vypočtením emisí podle přílohy VII.

b)

K doložení, že dochází k přijatelné aktualizaci a záznamu celkové odezvy systému, je nutné, aby systém splňoval jedno z následujících kritérií:

i)

součin průměrné doby náběhu a frekvence, se kterou systém zaznamenává aktualizovanou koncentraci, musí být nejméně 5. V žádném případě nesmí průměrná doba náběhu překračovat 10 sekund,

ii)

frekvence záznamu koncentrace musí být nejméně 2 Hz (viz také tabulka 6.7).

8.1.5.4.   Postup

Pro ověření odezvy každého systému kontinuálního analyzátoru platí tento postup:

a)

Při zapojení přístroje se postupuje podle instrukcí výrobce systému analyzátoru pro nastartování a provoz. Měřicí systém se nastaví pro optimalizaci vlastností. Toto ověření se provede s analyzátorem pracujícím stejným způsobem, jaký je použit u zkoušky emisí. Pokud analyzátor sdílí odběrný systém s jinými analyzátory a pokud tok plynu do jiných analyzátorů ovlivní dobu odezvy systému, pak se ostatní analyzátory nastartují a jsou v provozu během tohoto ověřování. Tato ověřovací zkouška může být realizována zároveň na několika analyzátorech sdílejících stejný odběrný systém. Pokud se při zkoušce emisí použijí analogové filtry nebo digitální filtry pracující v reálném čase, musí být tyto filtry v průběhu tohoto ověření fungovat stejným způsobem.

b)

Pro zařízení používané k potvrzení správnosti doby odezvy systému se doporučuje nejkratší délka vedení plynu mezi všemi připojeními, přičemž zdroj nulovacího plynu musí být připojen k rychločinnému třícestnému ventilu (2 vstupy a 1 výstup) za účelem řízení toku nulovacích a kalibračních plynů pro plný rozsah ke vstupu sondy odběrného systému nebo k tvarovce T v blízkosti výstupu ze sondy. Průtok plynu je obvykle větší než průtok vzorku sondou, přičemž přebytek proteče mimo vstup do sondy. Je-li průtok plynu menší než průtok sondou, upraví se koncentrace plynu, aby se zohlednilo ředění okolním vzduchem nasávaným sondou. Lze použít dvousložkové nebo vícesložkové kalibrační plyny pro plný rozsah. Lze použít dvousložkové nebo vícesložkové kalibrační plyny pro plný rozsah. Směs kalibračních plynů pro plný rozsah lze vytvořit zařízením k vytváření směsí nebo směšovacím zařízením. K vytvoření směsi kalibračních plynů pro plný rozsah zředěných N2 s kalibračními plyny pro plný rozsah zředěnými vzduchem se doporučuje použít zařízení k vytváření směsi nebo směšovací zařízení.

Použitím děliče plynů se kalibrační plyn pro plný rozsah NO–CO–CO2–C3H8–CH4 (zbytek N2) rovnoměrně smísí s kalibračním plynem pro plný rozsah NO2 (doplněný čištěným syntetickým vzduchem). Ve vhodných případech lze místo směsi kalibračního plynu pro plný rozsah NO-CO-CO2-C3H8-CH4 (zbytek N2) použít standardní dvousložkové kalibrační plyny pro plný rozsah. V takovém případě se musí pro každý analyzátor provést samostatná zkouška odezvy. Výstup děliče plynů se napojí na jiný vstup třícestného ventilu. Výstup ventilu se připojí k přetoku u sondy systému analyzátoru plynu nebo k přetokové tvarovce mezi sondou a potrubím vedoucím ke všem ověřovaným analyzátorům. Zapojení musí bránit pulsacím tlaku v důsledku zastavení toku směšovacím zařízením. Každá z těchto složek plynu, která není relevantní pro účely ověření analyzátorů, se vynechá. Alternativně lze použít láhve s jednotlivými plyny a dobu odezvy měřit odděleně.

c)

Sběr údajů se provádí takto:

i)

ventil se přepne k nastartování toku nulovacího plynu,

ii)

umožní se stabilizace zohledňující transportní zpoždění a nejpomalejší plnou odezvu analyzátoru,

iii)

zahájí se záznam údajů s frekvencí používanou při zkoušce emisí. Každá zaznamenaná hodnota musí být jedinečná aktualizovaná koncentrace naměřená analyzátorem, zaznamenané hodnoty se nesmí měnit interpolací nebo filtrováním,

iv)

ventil se přepne, aby umožňoval tok směsi kalibračních plynů pro plný rozsah do analyzátorů. Tento čas se zaznamená jako t 0,

v)

zohlední se transportní zpoždění a nejpomalejší plná odezva analyzátoru,

vi)

průtok se přepne tak, aby do analyzátoru vtékal nulovací plyn. Tento čas se zaznamená jako t 100,

vii)

zohlední se transportní zpoždění a nejpomalejší plná odezva analyzátoru,

viii)

kroky uvedené pod písm. c) iv) až vii) tohoto bodu se opakují k zaznamenání sedmi cyklů s tím, že nakonec do analyzátorů vteče nulovací plyn,

ix)

zaznamenávání se zastaví.

8.1.5.5.   Hodnocení vlastností

Údaje získané podle bodu 8.1.5.4 písm. c) slouží k výpočtu průměrné doby náběhu pro každý z analyzátorů.

a)

Pokud se na základě volby prokazuje vyhovění požadavkům bodu 8.1.5.3 písm. b) podbodu i), postupuje se takto: doby náběhu (v sekundách) se vynásobí příslušnými frekvencemi záznamu Hz (1/s). Hodnota každého výsledku musí činit nejméně 5. Je-li tato hodnota menší než 5, je nutné zvětšit frekvenci záznamu, nebo přizpůsobit průtoky, případně se musí změnit uspořádání odběrného systému za účelem prodloužení doby náběhu. Rovněž je možné nakonfigurovat digitální filtry za účelem prodloužení doby náběhu;

b)

Pokud se na základě volby prokazuje dodržení požadavků bodu 8.1.5.3 písm. b) podbodu ii), stačí prokázat, že se požadavkům bodu 8.1.5.3 písm. b) podbodu ii) vyhovělo.

8.1.6.   Ověření doby odezvy u kompenzačních analyzátorů

8.1.6.1.   Oblast působnosti a frekvence

Ověření se provádí k určení odezvy systému u kontinuální analýzy plynů, kde odezvu jednoho analyzátoru kompenzuje odezva jiného za účelem kvantifikování plynných emisí. Pro účely této kontroly se vodní pára považuje za plynnou složku. Toto ověření je povinné pro kontinuální analyzátory plynu, které se používají u zkušebních cyklů v neustáleném stavu (NRTC a LSI-NRTC) nebo cyklu RMC. Ověření není nutné u analyzátorů plynu pracujících s dávkami nebo pro kontinuální analyzátory plynu používané výhradně pro zkoušení pomocí cyklu NRSC s diskrétními režimy. Toto ověření se nevztahuje na korekce vody odstraněné ze vzorku, které byly provedeny po zkoušce Toto ověření se provádí po počáteční instalaci (tj. uvedení zkušební komory do provozu). Po větší údržbě lze použít bod 8.1.5 k ověření jednotné odezvy, pokud u všech vyměněných součástí byla někdy ověřena jednotná odezva za vlhka.

8.1.6.2.   Principy měření

Tímto postupem se ověřuje synchronizace a jednotná odezva při kontinuálních měřeních kombinovaných plynů. U tohoto postupu je nutné zajistit, že jsou v činnosti všechny kompenzační algoritmy a korekce vlhkosti.

8.1.6.3.   Požadavky na systém

Požadavky na celkovou dobu odezvy a na náběh uvedené v bodě 8.1.5.3 písm. a) platí rovněž pro kompenzační analyzátory. Navíc liší-li se frekvence záznamu od frekvence aktualizace kontinuálně kombinovaného / kompenzovaného signálu, použije se pro ověření vyžadované v bodě 8.1.5.3 písm. b) podbodě i) nižší z těchto dvou frekvencí.

8.1.6.4.   Postup

Musí se použít všechny postupy uvedené v bodě 8.1.5.4 písm. a) až c). Navíc se rovněž musí změřit doba odezvy a náběh vodní páry, pokud je kompenzační algoritmus založený na měření vodní páry. V takovém případě se nejméně jeden z použitých kalibračních plynů (avšak nikoliv NO2) zvlhčí tímto způsobem:

Pokud systém nepoužívá vysoušeč odebraného vzorku k odstranění vody ze vzorku plynu, kalibrační plyn se zvlhčí průtokem směsi plynu skrze utěsněnou nádobu (probubláváním destilovanou vodou), v níž se zvlhčí plyn na nejvyšší rosný bod vzorku, který se odhaduje v průběhu odběru emisí. Pokud systém během zkoušky používá kontrolou ověřený vysoušeč odebraného vzorku, lze připojit zvlhčenou směs plynů za vysoušečem vzorku tak, že směs bude probublávat destilovanou vodou v utěsněné nádobě při 298 ± 10 K (25 ± 10 °C), nebo při teplotě vyšší, než je rosný bod. V každém případě musí být zvlhčený plyn udržován při teplotě nejméně o 5 K (5 °C) vyšší, než je jeho lokální rosný bod v potrubí. Kteroukoli z těchto složek plynu je možné vypustit, není-li relevantní pro toto ověření analyzátorů. Pokud u některé z těchto složek plynu není možná kompenzace vody, je možné u těchto analyzátorů provést kontrolu odezvy bez zvlhčení.

8.1.7.   Měření parametrů motoru a podmínky okolí

Výrobce motoru používá postupy interní kontroly jakosti vyhovující uznávaným vnitrostátním nebo mezinárodním normám. Mimoto platí následující postupy.

8.1.7.1.   Kalibrace točivého momentu

8.1.7.1.1   Oblast působnosti a frekvence

Všechny systémy pro měření točivého momentu, včetně měřicích systémů a snímačů točivého momentu dynamometru, se kalibrují po počáteční instalaci a po větší údržbě za použití kromě jiného referenční síly nebo ramena páky o referenční délce se závažím. Pro opakování kalibrace se použije osvědčený technický úsudek. U linearizace výstupu snímače točivého momentu se postupuje podle instrukcí výrobce snímače. Jsou přípustné jiné metody kalibrace.

8.1.7.1.2   Kalibrace závaží

Při této technice se využívá známá síla vyplývající ze zavěšení určitého závaží na rameno páky v určité vzdálenosti. Je třeba zajistit, aby rameno páky se závažími bylo kolmo ke směru tíže (tj. aby bylo ve vodorovné poloze) a kolmo k rotační ose dynamometru. Nejméně šest kombinací kalibračních závaží se použije pro každý použitelný rozsah měření točivého momentu a hmotnosti závaží se rozmístí přibližně rovnoměrně v rozsahu měření. Během kalibrace je nutné, aby dynamometr osciloval nebo rotoval, a došlo tak ke zmenšení statické třecí hystereze. Síla, kterou vyvíjí konkrétní závaží, se určí vynásobením jeho hmotnosti podle mezinárodních norem hodnotou místního tíhového zrychlení.

8.1.7.1.3   Kalibrace tenzometry nebo prstencovým siloměrem

Při této technice se využívá síla vyplývající buď ze zavěšení závaží na rameno páky (závaží a délka ramene páky se nepoužijí pro určení referenčního točivého momentu) nebo se dynamometr provozuje při různých točivých momentech. Nejméně šest kombinací sil se použije pro každý použitelný rozsah měření točivého momentu a síly se rozmístí přibližně rovnoměrně v rozsahu měření. Během kalibrace je nutné, aby dynamometr osciloval nebo rotoval, a došlo tak ke zmenšení statické třecí hystereze. V tomto případě se referenční točivý moment určí vynásobením výstupní síly referenčního měřidla (např. tenzometr nebo prstencový siloměr) efektivní délkou ramena jeho páky, měřené od bodu měření síly k rotační ose dynamometru. Je třeba zajistit, aby se tato délka měřila kolmo k měřicí ose referenčního měřidla a byla kolmo k rotační ose dynamometru.

8.1.7.2.   Kalibrace tlaku, teploty a rosného bodu

Po počáteční instalaci se kalibrují přístroje pro měření tlaku, teploty a rosného bodu. Opakování kalibrace přístrojů se provádí podle instrukcí výrobce a osvědčeného úsudku.

U systémů k měření teploty s termočlánky, odporovými teploměrnými zařízeními a termistorovými čidly se kalibrace systému provádí podle popisu v bodě 8.1.4.4 ohledně ověření linearity.

8.1.8.   Měření průtoku

8.1.8.1.   Kalibrace průtoku paliva

Průtokoměry paliva se kalibrují po počáteční kalibraci. Opakování kalibrace přístrojů se provádí podle instrukcí výrobce a osvědčeného úsudku.

8.1.8.2.   Kalibrace průtoku nasávaného vzduchu

Průtokoměry nasávaného vzduchu se kalibrují po počáteční kalibraci. Opakování kalibrace přístrojů se provádí podle instrukcí výrobce a osvědčeného úsudku.

8.1.8.3.   Kalibrace průtoku výfukového plynu

Průtokoměry výfukového plynu se kalibrují po počáteční kalibraci. Opakování kalibrace přístrojů se provádí podle instrukcí výrobce a osvědčeného úsudku.

8.1.8.4.   Kalibrace průtoku zředěného výfukového plynu (CVS)

8.1.8.4.1   Shrnutí

a)

Tento oddíl popisuje, jak kalibrovat průtokoměry pro systémy odběru vzorků výfukového plynu s konstantním objemem;

b)

Kalibrace se provede, když je průtokoměr namontován do své trvalé pozice. Tuto kalibraci je nutné provést vždy, když se změní jakákoliv část konfigurace toku před průtokoměrem nebo za ním, která může ovlivnit kalibraci průtokoměru. Tato kalibrace se provede po počáteční instalaci systému CVS a po každé nápravné akci, která neodstraní nesplnění ověření průtoku zředěného výfukového plynu (tj. kontrolu propanem) v bodě 8.1.8.5;

c)

Průtokoměr CVS se kalibruje referenčním průtokoměrem, např. průtokoměrem Venturiho trubicí s podzvukovým prouděním, průtokovou tryskou zakřivenou dlouhým poloměrem, clonou s pozvolnou změnou průměru, prvkem s laminárním prouděním, sadou Venturiho trubic s kritickým prouděním nebo ultrazvukovým průtokoměrem. Musí se použít referenční průtokoměr, který udává množství s tolerancí ±1 % podle mezinárodně uznávaných norem. Odezva tohoto referenčního průtokoměru na průtok se použije jako referenční hodnota pro kalibraci průtokoměru CVS;

d)

Před referenčním průtokoměrem se nesmí použít clona nebo jiný odpor, který by mohl ovlivnit průtok před průtokoměrem, vyjma případu, kdy se průtokoměr kalibruje s tímto odporem;

e)

Sled kalibrace uvedený v tomto bodě 8.1.8.4 je založen na molárním přístupu. Pro odpovídající sled používaný při hmotnostním přístupu viz bod 2.5 přílohy VII;

f)

Alternativně lze podle rozhodnutí výrobce při kalibraci přesunout Venturiho trubici s kritickým prouděním (CFV) nebo Venturiho trubici s podzvukovým prouděním (SSV) z jejího stálého umístění, jestliže jsou při instalaci do systému CVS splněny tyto podmínky:

1)

Po instalaci CFV nebo SSV do systému CVS je třeba uplatnit osvědčený technický úsudek k ověření toho, že mezi vstupem CVS a Venturiho trubicí nevznikly netěsnosti.

2)

Po kalibraci Venturiho trubice ex situ se musí v případě CFV ověřit veškeré kombinace průtoku Venturiho trubicí, nebo v případě SSV minimálně v 10 bodech průtoku pomocí kontroly propanem, jak je popsáno v bodě 8.1.8.5. Výsledek kontroly propanem nesmí v žádném bodě průtoku Venturiho trubicí překračovat dovolenou odchylku uvedenou v bodě 8.1.8.5.6.

3)

K ověření ex-situ kalibrace systému CVS s více než jednou CFV se provede následující kontrola:

i)

k zajištění konstantního toku propanu do ředicího tunelu se použije zařízení zajišťující konstantní průtok,

ii)

v případě průtokoměru SSV se koncentrace uhlovodíků měří nejméně u 10 různých průtoků, nebo v případě průtokoměru CFV u veškerých možných kombinací průtoku, přičemž průtok propanu musí být konstantní,

iii)

koncentrace pozadí uhlovodíků v ředicím vzduchu se měří na začátku a na konci zkoušky. Před provedením regresní analýzy podle bodu iv) se odečte průměrná koncentrace pozadí z každého měření v každém bodě průtoku,

iv)

s použitím všech párových hodnot průtoku a korigované koncentrace se musí provést regrese výkonu, aby vznikl vztah ve tvaru y = a × xb, přičemž koncentrace se použije jako nezávislá proměnná a průtok jako závislá proměnná. Pro každý datový bod je třeba vypočítat rozdíl mezi změřeným průtokem a hodnotou, kterou představuje přizpůsobení křivky. Rozdíl v každém bodě musí být menší než příslušná regresní hodnota ± 1 %. Hodnota b musí být mezi – 1,005 a – 0,995. Jestliže výsledky nejsou v těchto mezích, je třeba provést nápravné kroky v souladu s bodem 8.1.8.5.1 písm. a).

8.1.8.4.2   Kalibrace PDP

Objemové dávkovací čerpadlo (PDP) se kalibruje, aby se stanovila rovnice průtoku v závislosti na otáčkách PDP zohledňující únik toku těsnicími plochami v PDP jako funkce vstupního tlaku PDP. Pro tuto rovnici se stanoví koeficienty specifické pro každé otáčky, při nichž PDP pracuje. Průtokoměr PDP se kalibruje takto:

a)

Systém se zapojí podle obrázku 6.5;

b)

Úniky mezi kalibračním průtokoměrem a PDP musí být menší než 0,3 % celkového průtoku v nejnižším kalibrovaném průtokovém bodě; například v bodě největšího odporu a nejnižších otáček PDP;

c)

Během činnosti PDP je nutné udržovat konstantní teplotu na vstupu PDP v rozmezí ±2 % od střední absolutní teploty na vstupu T in;

d)

Otáčky PDP se nastaví na první bod otáček kalibrace;

e)

Variabilní odpor se nastaví do polohy úplného otevření;

f)

PDP je v činnosti po dobu nejméně 3 minut, aby se systém stabilizoval. Následně se při kontinuálně pracujícím PDP zaznamenávají po dobu nejméně 30 sekund střední hodnoty nashromážděných údajů každé z těchto veličin:

i)

střední průtok referenčního průtokoměru,

Formula

,

ii)

střední teplota na vstupu PDP, T in,

iii)

střední statický absolutní tlak na vstupu PDP, p in,

iv)

střední statický absolutní tlak na výstupu PDP, p out,

v)

střední otáčky PDP, n PDP;

g)

Ventil odporu se postupně zavře, aby se snížil absolutní tlak na vstupu PDP, p in;

h)

Postup v písm. f) a g) bodu 8.1.8.4.2 se opakuje za účelem zaznamenání údajů v nejméně šesti polohách otevření ventilu odporu představujících úplný rozsah možných provozních tlaků ve vstupu PDP;

i)

Za použití nashromážděných dat a rovnic uvedených v příloze VII se PDP kalibruje;

j)

Postup v písm. f) až i) tohoto bodu se opakuje pro každé provozní otáčky PDP;

k)

Rovnice uvedené v oddílu 3 přílohy VII (molární přístup) nebo oddílu 2 přílohy VII (hmotnostní přístup) se použijí k stanovení rovnice pro průtok PDP pro zkoušky emisí;

l)

Kalibrace se ověří ověřením CVS (tj. kontrolou propanem) podle popisu v bodu 8.1.8.5;

m)

PDP se nesmí používat při hodnotách tlaku nižších, než je nejnižší tlak na vstupu, který byl zkoušen při kalibraci.

8.1.8.4.3   Kalibrace CFV

Venturiho trubice s kritickým prouděním (CFV) se kalibruje, aby se ověřil její výtokový koeficient C d při nejmenším očekávaném rozdílu statických tlaků mezi jejím vstupem a výstupem. Průtokoměr CFV se kalibruje takto:

a)

Systém se zapojí podle obrázku 6.5;

b)

Nastartuje se dmychadlo za CFV;

c)

Během činnosti CFV je nutné udržovat konstantní teplotu na vstupu CFV v rozmezí ± 2 % od střední absolutní teploty na vstupu T in;

d)

Úniky mezi kalibračním průtokoměrem a CFV musí být menší než 0,3 % celkového průtoku při nejvyšším odporu;

e)

Variabilní odpor se nastaví do polohy úplného otevření. Místo variabilního odporu lze měnit tlak za CFV změnou otáček dmychadla nebo zavedením řízeného úniku. Některá dmychadla však mají omezení při provozu bez zatížení;

f)

Po dobu nejméně 3 minut je CFV v činnosti, aby se systém stabilizoval. Následně se při trvale pracující CFV zaznamenávají po dobu nejméně 30 sekund střední hodnoty nashromážděných dat každé z těchto veličin:

i)

střední průtok referenčního průtokoměru,

Formula

,

ii)

volitelně střední rosný bod kalibračního vzduchu, T dew. Přípustné předpoklady během měření emisí viz příloha VII,

iii)

střední teplota na vstupu do Venturiho trubice, T in,

iv)

střední statický absolutní tlak na vstupu do Venturiho trubice, p in,

v)

střední rozdíl statických tlaků mezi vstupem a výstupem CFV, Δp CFV;

g)

Ventil odporu se postupně zavře, aby se snížil absolutní tlak na vstupu do CFV, p in;

h)

Postup v písm. f) a g) tohoto bodu se opakuje za účelem zaznamenání údajů v nejméně deseti polohách odporu, aby se během zkoušení vyzkoušel očekávaný nejúplnější rozsah Δp CFV. Pro kalibraci při nejmenších možných odporech není nutné odstraňovat komponenty kalibrace nebo komponenty CVS;

i)

C d a nejvyšší přípustný poměr tlaků r se určí postupem popsaným v příloze VII;

j)

C d se použije k určení průtoku CFV během zkoušky emisí. CFV se nesmí používat při hodnotách nižších, než je přípustný poměr r, určený v příloze VII;

k)

Kalibrace se ověří ověřením CVS (tj. kontrolou propanem) podle popisu v bodu 8.1.8.5;

l)

Pokud je CVS nakonfigurován, aby působil současně na více CFV, musí být CVS kalibrován jedním z následujících způsobů:

i)

veškeré kombinace systémů CFV musí být kalibrovány podle tohoto oddílu a přílohy VII. Instrukce k výpočtu průtoku pro tuto možnost viz příloha VII,

ii)

každá CFV se musí kalibrovat podle tohoto bodu a přílohy VII. Instrukce k výpočtu průtoku pro tuto možnost viz příloha VII.

8.1.8.4.4   Kalibrace SSV

Venturiho trubice s podzvukovým prouděním (SSV) se kalibruje, aby se ověřil její výtokový koeficient C d při očekávaném rozpětí tlaků na vstupu. Průtokoměr SSV se kalibruje takto:

a)

Systém se zapojí podle obrázku 6.5;

b)

Nastartuje se dmychadlo za SSV;

c)

Úniky mezi kalibračním průtokoměrem a SSV musí být menší než 0,3 % celkového průtoku při nejvyšším odporu;

d)

Během činnosti SSV je nutné udržovat konstantní teplotu na vstupu SSV v rozmezí ±2 % od střední absolutní teploty na vstupu T in;

e)

Variabilní odpor nebo dmychadlo s proměnnými otáčkami se nastaví na průtok větší, než je největší průtok, který se očekává v průběhu zkoušky. Průtoky se nesmějí extrapolovat za kalibrované hodnoty, je tudíž vhodné ujistit se, že je Reynoldsovo číslo Re v hrdle SSV při největším kalibrovaném průtoku větší než maximální Re, které se očekává během zkoušky;

f)

SSV se ponechá v chodu po dobu nejméně 3 minut, aby se systém stabilizoval. Následně se při trvale pracující SSV zaznamenávají po dobu nejméně 30 sekund střední hodnoty nashromážděných dat každé z těchto veličin:

i)

střední průtok referenčního průtokoměru,

Formula

,

ii)

volitelně střední rosný bod kalibračního vzduchu, T dew. Přípustné předpoklady viz příloha VII,

iii)

střední teplota na vstupu do Venturiho trubice, T in,

iv)

střední statický absolutní tlak na vstupu do Venturiho trubice, p in,

v)

rozdíl statických tlaků mezi statickým tlakem na vstupu Venturiho trubice a statickým tlakem v hrdle Venturiho trubice, Δp SSV;

g)

Odporový ventil se postupně zavře nebo se sníží rychlost turbodmychadla s cílem snížit průtok;

h)

Postup v písm. f) a g) tohoto bodu se opakuje za účelem zaznamenání údajů o nejméně deseti průtocích;

i)

Stanoví se funkce C d v závislosti na Re za použití nashromážděných údajů a rovnic v příloze VII;

j)

Kalibrace se ověří ověřením CVS (tj. kontrolou propanem) podle popisu v bodě 8.1.8.5 za použití nové rovnice pro C d v závislosti na Re;

k)

SSV se použije pouze mezi minimálním a maximálním kalibrovaným průtokem;

l)

Rovnice uvedené v oddílu 3 přílohy VII (molární přístup) nebo oddílu 2 přílohy VII (hmotnostní přístup) se použijí ke stanovení průtoku SSV při zkoušce.

8.1.8.4.5   Kalibrace nadzvukového přístroje (vyhrazeno)

Obrázek 6.5

Schematická vyobrazení kalibrace CVS s průtokem zředěného výfukového plynu

Image

8.1.8.5.   Ověření CVS a zařízení k odběru vzorků dávkami (kontrola propanem)

8.1.8.5.1   Úvod

a)

Kontrola propanem slouží pro ověření CVS, aby se stanovilo, zda existují nesrovnalosti mezi naměřenými hodnotami zředěného výfukového plynu. Kontrola propanem rovněž pomáhá ověřit systém odběru vzorků dávkami, aby se zjistilo, zda existují nesrovnalosti v systému odběru dávkami odebírajícím vzorek z CVS, jak popisuje písm. f) tohoto bodu. Podle osvědčeného technického úsudku a bezpečné praxe lze tuto kontrolu provést jiným plynem, než je propan, např. CO2 nebo CO. Negativní výsledek kontroly propanem může indikovat problém či více problémů, které je nutné odstranit, viz níže:

i)

nesprávná kalibrace analyzátoru. Analyzátor FID je nutné znovu kalibrovat, opravit, nebo vyměnit,

ii)

zkontrolovat, zda nedochází k únikům v tunelu CVS, spojeních, spojovacích prvcích a odběrném systému HC podle bodu 8.1.8.7,

iii)

ověřit, zda nedošlo k nesprávnému smísení podle bodu 9.2.2,

iv)

ověřit, zda nedošlo ke kontaminaci odběrného systému uhlovodíky, jak popisuje bod 7.3.1.2,

v)

změna v kalibraci CVS. V daném místě se kalibruje průtokoměr CVS, jak popisuje bod 8.1.8.4,

vi)

jiné problémy s CVS nebo s technickým či programovým vybavením sloužícím k ověření odběru vzorků. Zkontroluje se, zda systém CVS a hardware a software k ověření CVS nevykazují nedostatky;

b)

Kontrola propanem používá buď referenční hmotnost nebo referenční průtok C3H8 coby sledovacího plynu v CVS. Pokud se použije referenční průtok, je třeba zohlednit každé neideální chování plynu C3H8 v referenčním průtokoměru. Oddíl 2 přílohy VII (hmotnostní přístup) nebo oddíl 3 přílohy VII (molární přístup) uvádějí, jak se kalibrují a používají některé průtokoměry. V bodě 8.1.8.5 a příloze VII nelze pracovat s předpokladem ideálního plynu. Při kontrole propanem se porovnává vypočtená hmotnost vstříknutého C3H8 s referenční hodnotou při měření HC a měření průtoků CVS.

8.1.8.5.2   Metoda zavedení známého množství propanu do systému CVS

Celková přesnost odběrného systému CVS a analytického systému se určí zavedením známého množství znečišťujícího plynu do systému během jeho normální činnosti. Znečišťující látka se analyzuje a vypočte se hmotnost podle přílohy VII. Použije se některá z dvou níže uvedených metod:

a)

Měření gravimetrickou technikou se provádí takto: Změří se hmotnost malé láhve naplněné oxidem uhelnatým nebo propanem s přesností ±0,01 g. Systém CVS je v činnosti jako při normální zkoušce emisí z výfuku po dobu 5 až 10 minut, přičemž se oxid uhelnatý nebo propan vpouští do systému. Množství vypuštěného čistého plynu se určí měřením rozdílu hmotnosti. Vzorek plynu se analyzuje obvyklým zařízením (vak k jímání vzorků nebo metoda integrace) a vypočte se hmotnost plynu.

b)

Měření clonou s kritickým prouděním se provádí takto: Známé množství čistého plynu (oxid uhelnatý nebo propan) se vpustí do systému CVS kalibrovanou clonou s kritickým prouděním. Je-li vstupní tlak dostatečně vysoký, je průtok, nastavený pomocí clony s kritickým průtokem, nezávislý na tlaku na výstupu clony (kritický průtok). Systém CVS musí být v činnosti jako při normální zkoušce emisí z výfuku po dobu 5 až 10 minut. Vzorek plynu se analyzuje obvyklým zařízením (vak k jímání vzorků nebo metoda integrace) a vypočte se hmotnost plynu.

8.1.8.5.3   Příprava kontroly propanem

Kontrola propanem se připraví následovně:

a)

Pokud se místo referenčního průtoku použije referenční hmotnost C3H8, pracuje se s lahví naplněnou C3H8. Referenční hmotnost C3H8 v lahvi se určí s přesností ±0,5 % množství C3H8, které má být použito;

b)

Zvolí se vhodné průtoky CVS a C3H8;

c)

Zvolí se místo zavedení C3H8 do CVS. Místo zavedení se zvolí tak, aby bylo co nejblíže místu, kde se do CVS zavádí výfukový systém motoru. Lahev s C3H8 se připojí k systému vstřikování plynu;

d)

CVS je v činnosti a je stabilizován;

e)

Všechny výměníky tepla v odběrném systému se předehřejí nebo předchladí;

f)

Vyhřívané a chlazené součásti, jako jsou odběrná potrubí, filtry, chladiče a čerpadla se stabilizují na své provozní teploty;

g)

Případně se ověří strana podtlaku odběrného systému HC na netěsnosti podle popisu v bodě 8.1.8.7.

8.1.8.5.4   Příprava odběrného systému HC na kontrolu propanem

Ověření strany podtlaku odběrného systému HC na netěsnosti lze provést podle písm. g) tohoto bodu. Použije-li se tento postup, lze použít postup kontaminace HC v bodě 7.3.1.2. Neprovádí-li se ověření strany podtlaku odběrného systému HC na netěsnosti podle písm. g), pak je nutné odběrný systém HC vynulovat, kalibrovat pro plný rozsah a ověřit kontaminaci následujícím způsobem:

a)

Zvolí se nejnižší rozsah analyzátoru HC, při kterém lze měřit koncentraci C3H8 plánovanou pro CVS, a zvolí se průtoky C3H8;

b)

Analyzátor HC se vynuluje nulovacím vzduchem zavedeným do vstupu analyzátoru;

c)

Analyzátor HC se kalibruje pro plný rozsah kalibračním plynem C3H8 zavedeným do vstupu analyzátoru;

d)

Proud nulovacího vzduchu směřuje na sondu HC nebo do trubky mezi sondou HC a přenosovým potrubím;

e)

Stabilní koncentrace HC v odběrném systému HC se měří při přetoku nulovacího vzduchu. V případě měření HC dávkami je nutné naplnit nádrž na dávku (jako je jímací vak) a změřit koncentraci přetoku HC;

f)

Přesahuje-li koncentrace HC v toku 2 μmol/mol, nesmí se do odstranění kontaminace postupovat dále. Je nutné určit zdroj kontaminace a odstranit ji, např. systém vyčistit nebo vyměnit kontaminované části;

g)

Pokud koncentrace HC v toku nepřesahuje 2 μmol/mol, zaznamená se tato hodnota jako x HCinit a použije se ke korigování kontaminací HC podle popisu v oddílu 2 přílohy VII (hmotnostní přístup) nebo oddílu 3 přílohy VII (molární přístup).

8.1.8.5.5   Provedení kontroly propanem

a)

Kontrola propanem se provede následovně:

i)

pro odběr vzorků HC v dávkách se připojí čistá úložná média, jako jsou vyprázdněné vaky,

ii)

přístroje k měření HC se používají podle instrukcí výrobce,

iii)

pokud se plánuje korekce koncentrací HC v pozadí ředicího vzduchu, měří se a zaznamená se pozadí HC v ředicím vzduchu,

iv)

všechna integrační zařízení se vynulují,

v)

zahájí se odběr vzorků a všechny integrátory průtoku se uvedou do provozu,

vi)

vpustí se C3H8 ve zvoleném průtoku. Pokud se použije referenční průtok C3H8, zahájí se integrace tohoto průtoku,

vii)

C3H8 se dále vpouští, dokud nebylo vypuštěno dostatek C3H8 k zajištění přesného kvantifikování referenčního C3H8 a změřeného C3H8,

viii)

láhev s C3H8 se uzavře, přičemž odběr vzorků pokračuje, dokud nejsou zohledněny časové prodlevy z důvodu dopravy vzorku a odezvy analyzátoru,

ix)

odběr vzorků se zastaví a všechny integrátory průtoku se vypnou;

b)

v případě měření clonou s kritickým prouděním lze pro kontrolu propanem použít jako alternativní metodu k metodě uvedené v písm. a) bodu 8.1.8.5.5 následující postup:

i)

pro odběr vzorků HC v dávkách se připojí čistá úložná média, jako jsou vyprázdněné vaky,

ii)

přístroje k měření HC se používají podle instrukcí výrobce,

iii)

pokud se plánuje korekce koncentrací HC v pozadí ředicího vzduchu, měří se a zaznamená se pozadí HC v ředicím vzduchu,

iv)

všechna integrační zařízení se vynulují,

v)

z referenční láhve se vypouští obsah C3H8 se zvoleným průtokem,

vi)

zahájí se odběr vzorků, přičemž všechny integrátory průtoku se uvedou do provozu poté, co se potvrdí stabilní koncentrace HC,

vii)

obsah lahve se dále vpouští, dokud nebylo vypuštěno dostatek C3H8 k zajištění přesného kvantifikování referenčního C3H8 a změřeného C3H8,

viii)

všechny integrátory se vypnou,

ix)

referenční láhev s C3H8 se uzavře.

8.1.8.5.6   Vyhodnocení kontroly propanem

Po provedení kontroly se provede následující:

a)

Pokud se prováděl odběr vzorků dávkami, podrobí se vzorky analýze co nejdříve;

b)

Po analýze HC následuje korekce kontaminace a pozadí;

c)

Vypočte se celková hmotnost C3H8 na základě údajů CVS a HC podle popisu v příloze VII, přičemž se použije molární hmotnost C3H8 (M C3H8) místo efektivní molární hmotnosti HC (M HC);

d)

Pokud se pracuje s referenční hmotností (gravimetrická metoda), určí se hmotnost propanu v láhvi s přesností ±0,5 % a referenční hmotnost C3H8 se určí odečtením hmotnosti prázdné láhve na propan od hmotnosti plné láhve na propan. Pokud se použije clona s kritickým prouděním (měření clonou s kritickým prouděním), určí se hmotnost propanu jako součin průtoku a doby zkoušky;

e)

Referenční hmotnost C3H8 se odečte od vypočtené hmotnosti. Pokud je výsledný rozdíl v rozmezí ±3,0 % referenční hmotnosti, CVS byl ověřen pozitivně.

8.1.8.5.7   Ověření sekundárního ředicího systému částic

Když se kontrola propanem musí opakovat k ověření sekundárního ředicího systému částic, platí pro toto ověření následující postup podle písm. a) až d):

a)

Odběrný systém HC se nastaví tak, aby vzorek odebral v blízkosti umístění úložného média zařízení k odběru vzorků (jako je filtr částic). Je-li absolutní tlak v tomto místě příliš nízký pro odběr vzorku HC, lze vzorek HC odebrat z výstupu odběrného čerpadla dávek. Vzorek z výstupu čerpadla je nutno odebírat opatrně, neboť únik z čerpadla za průtokoměrem zařízení k odběru vzorků dávkami, který by jinak byl přijatelný, způsobí chybný výsledek kontroly propanem;

b)

Kontrola propanem popsaná v tomto bodě se opakuje, avšak HC se odebírá ze zařízení k odběru vzorků dávkami;

c)

Vypočte se hmotnost C3H8 při zohlednění každého sekundárního zředění ze zařízení k odběru vzorků dávkami;

d)

Referenční hmotnost C3H8 se odečte od vypočtené hmotnosti. Pokud je výsledný rozdíl v rozmezí ±5 % referenční hmotnosti, zařízení k odběru vzorků dávkami ověření vyhovělo. V opačném případě je nutná korekce.

8.1.8.5.8   Ověření vysoušeče vzorku

Je-li na výstupu vysoušeče vzorku plynu umístěn snímač vlhkosti ke kontinuálnímu monitorování rosného bodu, tato kontrola se nemusí provádět, dokud je zajištěna vlhkost na výstupu vysoušeče pod minimálními hodnotami, které se používají při kontrolách utlumujícího rušivého vlivu, rušivého vlivu a kompenzace.

(a)

Je-li k odstranění vody ze vzorku plynu použit vysoušeč vzorku plynu, jak povoluje bod 9.3.2.3.1, ověřují se jeho vlastnosti z hlediska ochlazování po jeho instalaci a větší údržbě. V případě vysoušečů s osmotickými membránami se vlastnosti ověřují po instalaci, po větší údržbě a v období 35 dnů před zkoušením;

(b)

Schopnost analyzátoru správně měřit sledovanou složku výfukového plynu může být ovlivněna vodou, proto se voda někdy odstraňuje ze vzorku plynu před průchodem analyzátorem. Voda může například u chemiluminiscenčního detektoru negativně ovlivnit odezvu na NOx kolizním utlumujícím rušivým vlivem a u analyzátoru NDIR může mít pozitivní rušivý vliv vyvoláním odezvy obdobné jako na CO;

(c)

Vysoušeč vzorku plynu musí vyhovovat specifikacím stanoveným v bodě 9.3.2.3.1 pro rosný bod (T dew) a absolutní tlak (p total) za vysoušečem s osmotickou membránou nebo chladičem ve směru proudění;

(d)

Vlastnosti vysoušeče vzorku plynu se ověřují podle následujícího postupu, případně se použije osvědčený technický úsudek k sestavení jiného postupu:

i)

propojení se vytvoří z potrubí z polytetrafluorethylenu (PTFE) nebo z nerezavějící oceli,

ii)

N2 nebo čištěný vzduch se zvlhčí probubláváním destilovanou vodou v utěsněné nádobě, kde se zvlhčuje plyn na nejvyšší rosný bod vzorku, jehož se má v průběhu odběru vzorků emisí dosáhnout,

iii)

zvlhčený plyn se zavede před vysoušeč vzorku plynu,

iv)

teplota zvlhčeného plynu za nádobou se udržuje nejméně o 5 °C nad jeho rosným bodem,

v)

rosný bod (T dew) a absolutní tlak (p total) zvlhčeného plynu se měří co nejblíže vstupu vysoušeče vzorku plynu, aby se ověřilo, že tento rosný bod je nejvyšší, který byl odhadnut pro průběh odběru vzorku emisí,

vi)

rosný bod (T dew) a absolutní tlak (p total) zvlhčeného plynu se měří co nejblíže výstupu vysoušeče vzorku plynu,

vii)

vysoušeč vzorku plynu je pozitivně ověřen, pokud výsledek podle písm. d) podbodu vi) tohoto oddílu je nižší, než rosný bod odpovídající specifikacím vysoušeče vzorku plynu určeným podle bodu 9.3.2.3.1 plus 2 °C, nebo pokud molární podíl podle písm. d) podbodu vi) je menší než udávají odpovídající specifikace vysoušeče vzorku plynu plus 0,002 mol/mol, nebo 0,2 % objemových. Upozornění: pro toto ověření je rosný bod vzorku plynu vyjádřen v absolutní teplotě, tj. v Kelvinech.

8.1.8.6.   Periodická kalibrace části toku částic a přidružené měřicí systémy surového výfukového plynu

8.1.8.6.1   Specifikace měření toku z rozdílů průtoků

U systémů s ředěním části toku k odběru proporcionálního vzorku surového výfukového plynu má zvláštní význam přesnost toku vzorku qm p, pokud se neměří přímo, ale určuje se diferenciálním měřením toku, jak stanoví rovnice (6-20):

q m p = q m dewq m dw

(6-20)

kde:

qm p

je hmotnostní průtok vzorku výfukového plynu do systému s ředěním části toku

qm dw

je hmotnostní průtok ředicího vzduchu (ve vlhkém stavu)

qm dew

je hmotnostní průtok ekvivalentního zředěného výfukového plynu ve vlhkém stavu

V tomto případě musí být maximální chyba rozdílu taková, aby hodnota qm p byla přesně v rozmezí ± 5 %, je-li ředicí poměr menší než 15. Tuto chybu je možné vypočítat metodou střední kvadratické odchylky chyb každého přístroje.

Přijatelnou přesnost q mp lze získat některou z těchto metod:

a)

je-li absolutní přesnost qm dew a qm dw ± 0,2 %, dosáhne se přesnosti qm p ≤ 5 % při ředicím poměru 15. Při vyšších ředicích poměrech však dochází k větším chybám;

b)

kalibrace qm dw vztažená k qm dew se provádí tak, aby se dosáhlo stejné přesnosti qm p jako podle písm. a). Podrobnosti viz bod 8.1.8.6.2;

c)

přesnost q mp se určuje nepřímo z přesnosti ředicího poměru určeného sledovacím plynem, např. CO2. Vyžaduje se přesnost pro q mp rovnocenná postupu podle písm. a);

d)

absolutní přesnost qm dew a qm dw je v rozmezí ±2 % plného rozsahu stupnice, maximální chyba rozdílu mezi qm dew a qm dw je v rozmezí 0,2 % a chyba linearity je v rozmezí ±0,2 % nejvyšší hodnoty qm dew pozorované během zkoušky.

8.1.8.6.2   Kalibrace měření toku z rozdílů průtoků

Systém s ředěním části toku pro odběr proporcionálního vzorku surového výfukového plynu, musí být periodicky kalibrován přesným průtokoměrem, který odpovídá mezinárodním či vnitrostátním normám. Průtokoměr sestavy přístrojů k měření průtoku se musí kalibrovat jedním z následujících postupů, aby průtok sondou qm p do tunelu splňoval požadavky na přesnost v bodě 8.1.8.6.1.

a)

Průtokoměr qm dw se zapojí v sérii s průtokoměrem qm dew, rozdíl mezi dvěma průtokoměry se kalibruje pro nejméně 5 nastavených hodnot, přičemž hodnoty průtoku jsou rovnoměrně rozloženy mezi nejnižší hodnotou qm dw použitou při zkoušce a hodnotou qm dew použitou při zkoušce. Ředicí tunel může být obtékán;

b)

Kalibrovaný průtokoměr se zapojí do série s průtokoměrem pro qm dew a zkontroluje se přesnost hodnoty použité pro zkoušku. Poté se kalibrovaný přístroj k měření průtoku zapojí v sérii s průtokoměrem qm dw a zkontroluje se přesnost pro nejméně 5 nastavení odpovídajících ředicímu poměru mezi 3 a 15, vztaženo na hodnotu qm dew použitou při zkoušce;

c)

Přenosové potrubí TL (viz obrázek 6.7) se odpojí od výfukového systému a připojí se k němu kalibrované zařízení na měření průtoku s vhodným rozsahem pro měření qm p. Hodnota qm dew se nastaví na hodnotu použitou při zkoušce a qm dw se postupně nastaví nejméně na pět hodnot odpovídajících ředicím poměrům mezi 3 a 15. Nebo je možno použít speciální kalibrační proudovou dráhu, v níž je tunel obtečen, ale celkový a ředicí vzduch proudí příslušnými průtokoměry jako při skutečné zkoušce;

d)

Do přenosového potrubí TL výfukového systému se přivede sledovací plyn. Tímto sledovacím plynem může být některá ze složek výfukového plynu, např. CO2 nebo NOx. Po ředění v tunelu se měří složka, kterou je sledovací plyn. Měření se provádí pro 5 ředicích poměrů mezi 3 a 15. Přesnost průtoku vzorku se určí z ředicího poměru r d pomocí rovnice (6-21):

q m p = q m dew /r d

(6-21)

Aby se zaručila přesnost qm p, je nutno vzít v úvahu přesnost analyzátorů plynů.

8.1.8.6.3   Zvláštní požadavky na měření toku z rozdílů průtoků

Rozhodně se doporučuje provést kontrolu průtoku uhlíku ve skutečném výfukovém plynu, aby se zjistily problémy týkající se měření a regulace a aby se ověřila správná činnost systému s ředěním části toku. Kontrola průtoku uhlíku by měla být provedena nejméně při každé instalaci nového motoru nebo po významné změně konfigurace zkušební komory.

Motor musí běžet na točivý moment a otáčky při plném zatížení nebo v jiném ustáleném režimu, při němž vzniká 5 % nebo více emisí CO2. Systém odběru vzorků s ředěním části toku musí pracovat s faktorem ředění přibližně 15:1.

Provádí-li se kontrola průtoku uhlíku, použije se postup uvedený v dodatku 2 přílohy VII. Průtoky uhlíku se vypočítají podle rovnic v dodatku 2 přílohy VII. Všechny průtoky uhlíku se musí shodovat v mezích 5 %.

8.1.8.6.3.1   Kontrola před zkouškou

Kontrola před zkouškou se provádí v rozmezí dvou hodin před zkouškou následujícím způsobem.

Přesnost průtokoměrů se zkontroluje u nejméně dvou bodů stejným způsobem, jaký se používá pro kalibraci (viz bod 8.1.8.6.2), včetně hodnot průtoku qm dw, které odpovídají ředicím poměrům mezi 5 a 15 pro hodnotu qm dew použitou při zkoušce.

Pokud lze na základě záznamů postupu kalibrace podle bodu 8.1.8.6.2 prokázat, že kalibrace průtokoměru je stabilní po delší dobu, je možno kontrolu před zkouškou vynechat.

8.1.8.6.3.2   Určení doby transformace

Seřízení systému pro určení doby transformace je stejné jako při měření během zkoušky. Doba transformace, definovaná v bodě 2.4 dodatku 5 této přílohy a znázorněná na obrázku 6-11, se určí touto metodou:

Nezávislý referenční průtokoměr s měřicím rozsahem vhodným pro průtok sondou se zapojí do série se sondou bezprostředně u ní. Tento průtokoměr musí mít dobu transformace kratší než 100 ms pro velikosti průtoku použité při měření doby odezvy a dostatečně malé škrcení toku, aby neovlivňovalo dynamický výkon systému s ředěním části toku, a musí být v souladu s osvědčeným technickým úsudkem. Do průtoku výfukových plynů (nebo průtoku vzduchu, pokud se vypočítává průtok výfukových plynů) systémem s částečným ředěním toku se zavede skoková změna, z nízkého průtoku na nejméně 90 % plného rozsahu stupnice. Spouštěč skokové změny musí být stejný jako spouštěč použitý ke spuštění regulace předem stanoveného průběhu při skutečné zkoušce. Signál ke skokové změně průtoku výfukového plynu a odezva průtokoměru se zaznamenávají s frekvencí odběru vzorku nejméně 10 Hz.

Na základě těchto údajů se určí doba transformace pro systém s ředěním části toku, což je doba od počátku signálu ke skokové změně průtoku do bodu 50 % odezvy průtokoměru. Obdobným způsobem se určí doby transformace signálu qmp (tj. toku vzorku výfukového plynu do systému s ředěním části toku) a signálu qmew,i (tj. hmotnostního průtoku výfukového plynu ve vlhkém stavu proudícího z průtokoměru výfukového plynu). Tyto signály se používají při regresních kontrolách prováděných po každé zkoušce (viz bod 8.2.1.2).

Výpočet se opakuje pro nejméně pět signálů ke zvýšení a poklesu průtoku a z výsledků se vypočte průměrná hodnota. Od této hodnoty se odečte vnitřní doba transformace (< 100 ms) referenčního průtokoměru. Vyžaduje-li se kontrola „předem stanoveného průběhu“, v souladu s bodem 8.2.1.2 se použije „předem stanovená“ hodnota systému s ředěním části toku.

8.1.8.7.   Ověření těsnosti na straně podtlaku

8.1.8.7.1   Oblast působnosti a frekvence

Po počáteční instalaci systému pro odběru vzorků, po větší údržbě, např. po výměnách předsazených filtrů, a do 8 hodin před každým sledem zkušebního cyklu se musí ověřit, že nedochází k žádnému znatelnému úniku na straně podtlaku, a to za použití některé ze zkoušek netěsnosti, které popisuje tento oddíl. Toto ověření se nevztahuje na žádnou část s plným tokem u ředicího systému CVS.

8.1.8.7.2   Principy měření

Netěsnost lze odhalit naměřením malého průtoku, když by průtok měl být nulový, zjištěním naředění známé koncentrace kalibračního plynu pro plný rozsah při průtoku stranou podtlaku v systému pro odběr vzorků, nebo naměřením nárůstu tlaku v systému s podtlakem.

8.1.8.7.3   Zkouška netěsnosti pomocí malého průtoku

Netěsnost systému k odběru vzorků pomocí malého průtoku se zkouší takto:

a)

Konec sondy systému se utěsní některým z těchto postupů:

i)

nasazením krytky nebo ucpáním,

ii)

sonda se odpojí od přenosového potrubí, které se uzavře krytkou nebo se ucpe,

iii)

zavře se těsnící ventil v potrubí mezi sondou a přenosovým potrubím.

b)

Všechny vývěvy se uvedou do provozu. Po provedení stabilizace je nutné ověřit, že průtok stranou podtlaku systému k odběru vzorků je menší než 0,5 % normálního průtoku v systému při jeho používání. Jako aproximaci obvyklého průtoku systémem při jeho používání lze odhadnout typické průtoky analyzátorem a obtokem.

8.1.8.7.4   Zkouška netěsnosti zředěním kalibračního plynu pro plný rozsah

Pro tuto zkoušku lze použít jakýkoliv analyzátor plynů. Použije-li se k této zkoušce FID, musí se veškerá kontaminace systému k odběru vzorků uhlovodíky korigovat podle oddílů 2 a 3 přílohy VII o stanovení uhlovodíků. Zkreslení výsledků se vyloučí tím, že se použijí pouze analyzátory s opakovatelností 0,5 % nebo lepší při koncentraci kalibračního plynu pro plný rozsah, který se použije k této zkoušce. Zkouška netěsnosti na straně podtlaku se provede následovně:

a)

Analyzátor plynu se připraví jako pro zkoušku emisí;

b)

Kalibrační plyn pro plný rozsah se zavede do vstupu analyzátoru a ověří se, že je jeho koncentrace měřena v rozsahu očekávané přesnosti a opakovatelnosti měření;

c)

Přetok kalibračního plynu pro plný rozsah se směruje k jednomu z následujících míst systému k odběru vzorků:

i)

konec odběrné sondy,

ii)

přenosové potrubí se rozpojí ve spoji se sondou a kalibrační plyn pro plný rozsah vytéká v otevřeném konci přenosového potrubí,

iii)

třícestný ventil sériově namontovaný mezi odběrnou sondu a její přenosové potrubí;

d)

Ověří se, že koncentrace protékajícího kalibračního plynu pro plný rozsah je v rozmezí ±0,5 % koncentrace kalibračního plynu pro plný rozsah. Je-li naměřená hodnota menší než očekávaná, ukazuje to na netěsnost, je-li však naměřená hodnota větší než očekávaná, může signalizovat problém s kalibračním plynem pro plný rozsah nebo s analyzátorem samým. Vyšší než očekávaná naměřená hodnota neukazuje na netěsnost.

8.1.8.7.5   Zkouška netěsnosti pomocí zániku podtlaku

K provedení této zkoušky se vytvoří v odběrném systému na straně podtlaku podtlak a sleduje se míra úniku ze systému jako zánik vytvořeného podtlaku. K provedení této zkoušky je nutné znát objem odběrného systému na straně podtlaku s přesností ±10 % skutečného objemu. Zkoušku je nutné provést s měřicími přístroji, které splňují specifikace bodů 8.1 a 9.4.

Zkouška netěsnosti zánikem podtlaku se provede následovně:

a)

Konec sondy systému se utěsní co nejblíže k otvoru sondy některým z těchto postupů:

i)

nasazením krytky nebo ucpáním,

ii)

sonda se odpojí od přenosového potrubí, které se uzavře krytkou nebo se ucpe,

iii)

zavře se těsnící ventil v potrubí mezi sondou a přenosovým potrubím.

b)

Všechny vývěvy se uvedou do provozu. Vytvoří se podtlak, který odpovídá obvyklým provozním podmínkám. V případě použití vaků k jímání vzorků by se měl obvyklý postup vyprázdnění vaků k jímání vzorků opakovat dvakrát s cílem minimalizovat případné zachyceniny;

c)

Vypnou se odběrná čerpadla a systém se zaslepí. Změří a zaznamená se absolutní tlak zachyceného plynu a volitelně rovněž absolutní teplota v systému. Poskytne se dostatečná doba na vyrovnání všech přechodových jevů, která je dostatečně dlouhá na to, aby únik o hodnotě 0,5 % změnil tlak o nejméně desetinásobek rozlišovací schopnosti snímače tlaku. Znovu se zaznamenají tlak a volitelně teplota;

d)

Vypočte se únik průtoku v závislosti na předpokládané hodnotě nula pro objemy vyprázdněných vaků k jímání vzorků a v závislosti na známých hodnotách objemu systému k odběru vzorků, počátečních a konečných tlaků, volitelných teplot a uplynulého času. Pomocí rovnice (6-22) je nutné ověřit, že průtok při zániku podtlaku netěsností je menší než 0,5 % normálního průtoku systémem v jeho provozu:

Formula

(6-22)

kde:

qV leak

je míra zániku podtlaku (mol/s)

V vac

je geometrický objem strany podtlaku v systému odběru vzorků (m3)

R

je molární konstanta plynu (J/(mol · K))

p 2

je absolutní tlak na straně podtlaku v čase t 2 (Pa)

T 2

je absolutní teplota na straně podtlaku v čase t 2 (K)

p 1

je absolutní tlak na straně podtlaku v čase t 1 (Pa)

T 1

je absolutní teplota na straně podtlaku v čase t 1 (K)

t 2

je čas ukončení ověřovací zkoušky netěsnosti při zániku podtlaku (s)

t 1

je čas při začátku ověřovací zkoušky netěsnosti při zániku podtlaku (s)

8.1.9.   Měření CO a CO2

8.1.9.1.   Ověření rušivých vlivů H2O na analyzátory CO2 NDIR

8.1.9.1.1   Oblast působnosti a frekvence

Měří-li CO2 analyzátorem NDIR, musí se ověřit míra rušivého vlivu H2O po počáteční instalaci analyzátoru a po větší údržbě.

8.1.9.1.2   Principy měření

H2O může rušit odezvu analyzátoru NDIR na CO2. Jestliže analyzátor NDIR pracuje s kompenzačními algoritmy, které používají měření jiných plynů k ověření tohoto rušivého vlivu, musí se zároveň taková měření provádět za účelem přezkoušení kompenzačních algoritmů v průběhu ověřování rušivých vlivů působících na analyzátor.

8.1.9.1.3   Požadavky na systém

Na analyzátor NDIR pro CO2 může působit rušivý vliv H2O, který je v rozmezí (0,0 ±0,4) mmol/mol (očekávané střední koncentrace CO2).

8.1.9.1.4   Postup

Kontrola rušivého vlivu se provede následovně:

a)

Analyzátor NDIR pro CO2 se nastartuje, uvede v činnost, vynuluje a kalibruje pro plný rozsah stejně jako před zkouškou emisí;

b)

V utěsněné nádobě se v destilované vodě vytvoří zvlhčený zkušební plyn pomocí probublávání nulovacího vzduchu, který splňuje specifikace v bodě 9.5.1. Pokud odebraný vzorek neprochází vysoušečem, reguluje se teplota v nádobě tak, aby se vytvořila úroveň H2O přinejmenším o takové výši, jako je maximum očekávané v průběhu zkoušky. Pokud odebraný vzorek neprochází vysoušečem, reguluje se teplota v nádobě tak, aby se vytvořila úroveň H2O přinejmenším o takové výši, jakou vyžadují ustanovení bodu 9.3.2.3.1;

c)

Teplota zvlhčeného zkušebního plynu za nádobou se udržuje nejméně o 5 °K nad jeho rosným bodem;

d)

Do odběrného systému se zavede zvlhčený zkušební plyn. Zvlhčený zkušební plyn je možné zavést do místa za (ve směru průtoku) jakýmkoli vysoušečem vzorku, pokud se takový vysoušeč použije během zkoušky;

e)

Pokud možno co nejblíže vstupu do analyzátoru se změří molární podíl vody (x H2O) ve zvlhčeném zkušebním plynu. Například pro výpočet x H2O se změří rosný bod (T dew) a absolutní tlak (T dew);

f)

Kondenzaci v přenosovém potrubí, závitech nebo ventilech mezi bodem, ve kterém se měří x H2O, a analyzátorem, se zabrání použitím osvědčeného technického úsudku;

g)

Ponechá se určitý čas, aby se odezva analyzátoru stabilizovala. Doba stabilizace zahrnuje čas k odvodnění přenosového potrubí a čas potřebný k odezvě analyzátoru;

h)

Když analyzátor měří koncentraci vzorku, zaznamenají se údaje shromažďované v průběhu 30 sekund. Z těchto údajů se vypočítá aritmetický průměr. Pokud je tato hodnota v rozmezí (0,0 ± 0,4) mmol/mol, vyhověl analyzátor ověření z hlediska rušivého vlivu.

8.1.9.2.   Ověření rušivých vlivů H2O a CO2 u analyzátorů NDIR pro CO

8.1.9.2.1   Oblast působnosti a frekvence

Měří-li se CO analyzátorem NDIR, musí se ověřit míra rušivého vlivu H2O a CO2 po počáteční instalaci analyzátoru a po větší údržbě.

8.1.9.2.2   Principy měření

H2O a CO2 mohou mít pozitivní rušivý vliv na analyzátor NDIR tím, že způsobují odezvu podobnou jako CO. Jestliže analyzátor NDIR pracuje s kompenzačními algoritmy, které k ověření tohoto rušivého vlivu používají měření jiných plynů, musí se zároveň taková měření provádět za účelem přezkoušení kompenzačních algoritmů v průběhu ověřování rušivých vlivů působících na analyzátor.

8.1.9.2.3   Požadavky na systém

Na analyzátor NDIR pro CO může působit kombinovaný rušivý vliv H2O a CO2, který je v rozmezí ± 2 % očekávané střední koncentrace CO.

8.1.9.2.4   Postup

Kontrola rušivého vlivu se provede následovně:

a)

analyzátor NDIR pro CO se nastartuje, uvede v činnost, vynuluje a kalibruje pro plný rozsah stejně jako před zkouškou emisí;

b)

v utěsněné nádobě se v destilované vodě vytvoří zvlhčený zkušební plyn CO2 pomocí probublávání kalibračního CO2 pro plný rozsah. Pokud odebraný vzorek neprochází vysoušečem, reguluje se teplota v nádobě tak, aby se vytvořila úroveň H2O přinejmenším tak vysoká, jako je maximum očekávané v průběhu zkoušky. Pokud odebraný vzorek neprochází vysoušečem, reguluje se teplota v nádobě tak, aby se vytvořila úroveň H2O přinejmenším tak vysoká, jak vyžaduje bod 9.3.2.3.1.1. Použije se koncentrace kalibračního plynu CO2 pro plný rozsah přinejmenším tak vysoká, jako je očekávané maximum během zkoušky;

c)

do odběrného systému se zavede zvlhčený zkušební plyn CO2. Zvlhčený zkušební plyn CO2 je možné zavést do místa za (ve směru průtoku) jakýmkoli vysoušečem vzorku, pokud se takový vysoušeč použije během zkoušky;

d)

pokud možno co nejblíže vstupu do analyzátoru se změří molární podíl vody (x H2O) ve zvlhčeném zkušebním plynu. Například pro výpočet x H2O se změří rosný bod (T dew) a absolutní tlak (p total);

e)

kondenzaci v přenosovém potrubí, závitech nebo ventilech mezi bodem, ve kterém se měří x H2O, a analyzátorem, se zabrání použitím osvědčeného technického úsudku;

f)

ponechá se určitý čas, aby se odezva analyzátoru stabilizovala;

g)

když analyzátor měří koncentraci vzorku, zaznamenají se údaje shromažďované v průběhu 30 sekund. Z těchto údajů se vypočítá aritmetický průměr;

h)

pokud výsledek vypočtený v písm. g) tohoto bodu je v rámci odchylek dovolených podle bodu 8.1.9.2.3, vyhověl analyzátor ověření z hlediska rušivého vlivu;

i)

postupy ke zjišťování rušivých vlivů CO2 a H2O se také mohou provádět odděleně. Jsou-li úrovně CO2 a H2O vyšší než maximální úrovně očekávané při zkouškách, musí se každá zjištěná hodnota rušivého vlivu snížit vynásobením zjištěného rušivého vlivu poměrem hodnoty maximální očekávané koncentrace ke skutečné hodnotě použité v průběhu tohoto postupu. Je možno provádět oddělené postupy ke zjišťování rušivého vlivu koncentrací H2O (směrem dolů až k 0,025 mol/mol obsahu H2O), které jsou nižší než maximální úrovně očekávané během zkoušky, avšak zjištěné rušivé vlivy H2O se zvětší vynásobením zjištěného rušivého vlivu poměrem hodnoty maximální očekávané koncentrace H2O ke skutečné hodnotě použité v průběhu tohoto postupu. Součet takto upravených dvou hodnot rušivého vlivu musí splňovat požadavky na dovolené odchylky specifikované v bodě 8.1.9.2.3.

8.1.10.   Měření uhlovodíků

8.1.10.1   Optimalizace a ověření FID

8.1.10.1.1   Oblast působnosti a frekvence

Všechny analyzátory FID je nutné kalibrovat po počáteční instalaci. Opakování kalibrace se provádí podle potřeby na základě osvědčeného technického úsudku. V případě FID, které měří uhlovodíky, se provádí následující kroky:

a)

odezvu FID na různé uhlovodíky je nutné optimalizovat po počáteční instalaci analyzátoru a po větší údržbě. Odezva FID na propylen a toluen musí být mezi 0,9 a 1,1 k propanu;

b)

faktor odezvy FID na methan (CH4) se určí po počáteční instalaci analyzátoru a po větší údržbě, jak popisuje bod 8.1.10.1.4;

c)

odezvu na methan (CH4) je nutné ověřit do 185 dnů před zkouškou.

8.1.10.1.2   Kalibrace

Podle osvědčeného technického úsudku se vypracuje postup kalibrace, který může vycházet z instrukcí výrobce analyzátoru FID a doporučené frekvence kalibrace FID. Analyzátor FID se kalibruje kalibračními plyny C3H8, které vyhovují specifikacím v bodu 9.5.1. Kalibrace se provádí na bázi uhlíkového čísla jedna (C1).

8.1.10.1.3   ptimalizace odezvy FID na uhlovodíky

Tento postup platí pouze pro analyzátory FID, které měří uhlovodíky.

a)

Pro počáteční nastartování přístroje a základní provozní nastavení s palivem FID a nulovacím vzduchem je nutné dodržet požadavky výrobce přístroje a použít osvědčený technický úsudek. Vyhřívané analyzátory FID musí být v požadovaném rozsahu provozní teploty. Odezva analyzátoru FID se optimalizuje tak, aby vyhovovala požadavkům týkajícím se faktorů odezvy uhlovodíků a kontroly rušivého vlivu kyslíku podle písm. a) bodu 8.1.10.1.1 a podle bodu 8.1.10.2 pro nejobvyklejší rozsah analyzátoru, který se očekává během zkoušek emisí. Pokud je obvyklý rozsah analyzátoru menší než minimální rozsah pro optimalizaci, který specifikoval výrobce přístroje, lze za účelem získání přesné optimalizace analyzátoru FID použít vyšší rozsah analyzátoru podle doporučení výrobce přístroje a osvědčeného technického úsudku.

b)

Vyhřívané analyzátory FID musí být v požadovaném rozsahu provozní teploty. Odezva FID musí být optimalizována v nejobvyklejším rozsahu analyzátoru, který se očekává během zkoušek emisí. Do analyzátoru se při průtocích paliva a vzduchu nastavených podle doporučení výrobce zavede kalibrační plyn pro plný rozsah.

c)

Pro optimalizaci se postupuje podle následujících kroků i) až iv) nebo podle instrukcí výrobce přístroje. Případně lze při optimalizaci postupovat podle postupů v publikaci SAE č. 770141;

i)

odezva se při daném průtoku paliva určí z rozdílu mezi odezvou na kalibrační plyn pro plný rozsah a odezvou na nulovací plyn,

ii)

průtok paliva se postupně seřídí nad hodnotu uvedenou výrobcem a pod tuto hodnotu. Při těchto průtocích paliva se zaznamená odezva na kalibrační plyn pro plný rozsah a na nulovací plyn,

iii)

rozdíl mezi odezvou na kalibrační plyn pro plný rozsah a na nulu se vynese jako křivka a průtok paliva se seřídí ke straně křivky s bohatou směsí. To je počáteční seřízení průtoku, které může vyžadovat další optimalizaci v závislosti na výsledcích faktorů odezvy na uhlovodíky a na kontrole rušivého vlivu kyslíku podle písm. a) bodu 8.1.10.1.1 a podle bodu 8.1.10.2,

iv)

jestliže rušivý vliv kyslíku nebo faktory odezvy uhlovodíků nesplňují následující požadavky, seřídí se průtok vzduchu po stupních nad hodnoty uvedené výrobcem a pod tyto hodnoty a pro každý průtok se opakuje postup podle písm. a) bodu 8.1.10.1.1 a podle bodu 8.1.10.2.

d)

Stanoví se optimální průtoky nebo tlaky pro palivo a vzduch pro hořák analyzátoru FID a tyto údaje se shromáždí a zaznamenají jako budoucí referenční hodnoty.

8.1.10.1.4   Určení faktoru odezvy na CH4 u analyzátorů FID měřících uhlovodíky

Vzhledem k tomu, že analyzátory FID mají obecně jinou odezvu na CH4 než na C3H8, musí se po optimalizaci FID určit u každého analyzátoru FID, kterým se měří THC, faktor odezvy CH4 (RF CH4[THC-FID]). Za účelem kompenzace odezvy na CH4 se při výpočtech k určení uhlovodíků popsaných v oddíle 2 přílohy VII (hmotnostní přístup) nebo oddíle 3 přílohy VII (molární přístup) použije faktor RF CH4[THC-FID] naposledy změřený podle tohoto oddílu. Faktor RF CH4[THC-FID] se určí takto:

a)

pro kalibraci analyzátoru před zkouškou emisí se zvolí koncentrace kalibračního plynu pro plný rozsah C3H8. Je nutné zvolit pouze kalibrační plyny pro plný rozsah, které splňují specifikace v bodu 9.5.1 a koncentrace C3H8 se zaznamená;

b)

je nutné zvolit pouze kalibrační plyn pro plný rozsah CH4, který splňuje specifikace v bodu 9.5.1 a koncentrace CH4 se zaznamená;

c)

analyzátor FID se provozuje podle instrukcí výrobce;

d)

ověří se, že byl analyzátor FID kalibrován pomocí C3H8. Kalibrace se musí provést na bázi uhlíkového čísla jedna (C1);

e)

analyzátor FID se vynuluje nulovacím plynem pro zkoušku emisí;

f)

analyzátor se zkalibruje zvoleným kalibračním plynem pro plný rozsah C3H8;

g)

kalibrační plyn pro plný rozsah CH4 zvolený podle písm. b) se zavede do zkušebního portu analyzátoru FID;

h)

odezva analyzátoru se stabilizuje. Doba stabilizace může zahrnovat čas k pročištění analyzátoru a čas potřebný k odezvě analyzátoru;

i)

v době, kdy všechny analyzátory měří koncentraci CH4, se musí zaznamenávat údaje nahromaděné v průběhu 30 sekund a vypočítávat aritmetické průměry těchto údajů;

j)

aritmetický průměr naměřené koncentrace se vydělí zaznamenanou koncentrací kalibračního plynu pro plný rozsah CH4. Výsledkem je faktor odezvy analyzátoru FID na CH4, RF CH4[THC-FID].

8.1.10.1.5   Ověření odezvy na methan (CH4) u analyzátorů FID měřících uhlovodíky

Je-li hodnota faktoru RF CH4[THC-FID] vypočtená podle bodu 8.1.10.1.4 v rozmezí ±5,0 % od naposledy stanovené hodnoty, je výsledek ověření odezvy HC FID na methan pozitivní.

a)

Nejdříve je nutné ověřit, že tlaky nebo průtoky paliva pro FID, vzduchu pro hořák a odebraného vzorku jsou jednotlivě v rozmezí ±0,5 % od naposledy zaznamenané hodnoty, podle popisu v bodě 8.1.10.1.3. Pokud je nutné tyto průtoky upravit, musí se určit nový faktor RF CH4[THC-FID] podle popisu v bodě 8.1.10.1.4. Je třeba ověřit, že určená hodnota faktoru RF CH4[THC-FID] je v rámci dovolené odchylky uvedené v bodě 8.1.10.1.5;

b)

Není-li hodnota faktoru RF CH4[THC-FID] v rámci dovolené odchylky v bodě 8.1.10.1.5, je nutné znovu optimalizovat odezvu FID podle popisu v bodě 8.1.10.1.3;

c)

Musí se určit nový faktor RF CH4[THC-FID] podle popisu v bodě 8.1.10.1.4. Tato nová hodnota RF CH4[THC-FID] se použije při výpočtech k určení uhlovodíků popsaných v oddíle 2 přílohy VII (hmotnostní přístup) nebo oddíle 3 přílohy VII (molární přístup).

8.1.10.2   Nestechiometrické ověření rušivého vlivu O2 u analyzátorů FID pro měření surového výfukového plynu

8.1.10.2.1   Oblast působnosti a frekvence

Pokud se analyzátory FID používají při měření surového výfukového plynu, ověří se rušivý vliv O2 po počáteční instalaci a po větší údržbě.

8.1.10.2.2   Principy měření

Změny koncentrace O2 v surovém výfukovém plynu mohou ovlivnit odezvu FID tím, že změní teplotu plamene FID. Pro účely tohoto ověření je nutné optimalizovat průtok paliva pro FID, vzduchu pro hořák a odebraného vzorku. Vlastnosti analyzátoru FID se ověří kompenzačními algoritmy pro rušivý vliv O2, který se v průběhu zkoušky emisí na analyzátoru FID projevuje.

8.1.10.2.3   Požadavky na systém

Každý analyzátor FID použitý při zkouškách musí projít ověřením rušivého vlivu O2 podle tohoto oddílu.

8.1.10.2.4   Postup

Rušivý vliv O2 na analyzátor FID se určí následujícím postupem, přičemž lze použít jeden či více děličů plynu za účelem vytvoření koncentrací referenčních plynů nutných k provedení tohoto ověření:

a)

Ke kalibraci analyzátorů pro plný rozsah před zkouškou emisí se zvolí tři referenční kalibrační plyny pro plný rozsah, které odpovídají specifikacím v bodě 9.5.1 a obsahují koncentraci C3H8. Pro analyzátory FID kalibrované pomocí CH4 s aplikací separátoru plynů jiných než methan se použijí referenční kalibrační plyny CH4. Tři vyvážené koncentrace plynu se zvolí tak, aby koncentrace O2 a N2 představovaly minimální a maximální a mezilehlé koncentrace O2, které se očekávají během zkoušky. Pokud je analyzátor FID kalibrován kalibračním plynem pro plný rozsah, který je v rovnováze ke střední očekávané koncentraci kyslíku, není nutné použít střední koncentraci O2;

b)

Je třeba potvrdit, že analyzátor FID splňuje všechny specifikace uvedené v bodě 8.1.10.1;

c)

Analyzátor FID se nastartuje a provozuje jako před zkouškou emisí. Bez ohledu na zdroj vzduchu hořáku FID během zkoušky je nutné k tomuto ověření použít pro hořák FID nulovací vzduch;

d)

Analyzátor se nastaví na nulu;

e)

Analyzátor se kalibruje pro plný rozsah kalibračním plynem pro plný rozsah, který bude použit během zkoušky emisí;

f)

Nulovacím plynem, který bude použit během zkoušky emisí, se zkontroluje odezva na nulu. Pokud je střední odezva na nulu v průběhu 30 sekund shromažďování údajů v rozmezí ±0,5 % referenční hodnoty kalibračního plynu pro plný rozsah použitého podle písm. e) tohoto bodu, přistoupí se dalšímu kroku; v opačném případě se postup zahájí znovu krokem podle písm. d) tohoto bodu;

g)

Zkontroluje se odezva analyzátoru kalibračním plynem pro plný rozsah, který má minimální koncentraci O2, jež se očekává při zkoušce. Střední hodnota odezvy ze vzorku stabilizovaných údajů, které byly nashromážděny během 30 sekund, se zaznamená jako x O2minHC;

h)

Nulovacím plynem, který bude použit během zkoušky emisí, se zkontroluje odezva analyzátoru FID na nulu. Pokud je střední odezva na nulu v průběhu 30 sekund vzorku stabilizovaných údajů v rozmezí ±0,5 % referenční hodnoty kalibračního plynu pro plný rozsah použitého podle písm. e) tohoto bodu, přistoupí se k dalšímu kroku, v opačném případě se postup zahájí znovu krokem podle písm. d) tohoto bodu;

i)

Zkontroluje se odezva analyzátoru kalibračním plynem pro plný rozsah, který má průměrnou koncentraci O2, jež se očekává při zkoušce. Střední hodnota odezvy ze vzorku stabilizovaných údajů, které byly nashromážděny během 30 sekund, se zaznamená jako x O2avgHC;

j)

Nulovacím plynem, který bude použit během zkoušky emisí, se zkontroluje odezva analyzátoru FID na nulu. Pokud je střední odezva na nulu v průběhu 30 sekund vzorku stabilizovaných údajů v rozmezí ± 0,5 % referenční hodnoty kalibračního plynu pro plný rozsah použitého podle písm. e) tohoto bodu, přistoupí se k dalšímu kroku, v opačném případě se postup zahájí znovu krokem podle písm. d) tohoto bodu;

k)

Zkontroluje se odezva analyzátoru kalibračním plynem pro plný rozsah, který má maximální koncentraci O2, jež se očekává při zkoušce. Střední hodnota odezvy ze vzorku stabilizovaných údajů, které byly nashromážděny během 30 sekund, se zaznamená jako x O2maxHC;

l)

Nulovacím plynem, který bude použit během zkoušky emisí, se zkontroluje odezva analyzátoru FID na nulu. Pokud je střední odezva na nulu v průběhu 30 sekund vzorku stabilizovaných údajů v rozmezí ± 0,5 % referenční hodnoty kalibračního plynu pro plný rozsah použitého podle písm. e) tohoto bodu, přistoupí se k dalšímu kroku, v opačném případě se postup zahájí znovu krokem podle písm. d) tohoto bodu;

m)

Vypočítá se procentuální rozdíl mezi x O2maxHC a koncentrací jeho referenčního plynu. Vypočítá se procentuální rozdíl mezi x O2avgHC a koncentrací jeho referenčního plynu. Vypočítá se procentuální rozdíl mezi x O2minHC a koncentrací jeho referenčního plynu. Určí se největší procentuální rozdíl z těchto tří údajů. Ten je rušivým vlivem O2;

n)

Pokud je rušivý vliv O2 v rozmezí ± 3 %, prošel analyzátor FID pozitivně ověřením rušivého vlivu O2. V opačném případě je nutné nedostatky napravit následovně:

i)

zopakovat ověření s cílem zjistit, zda nedošlo k chybě,

ii)

zvolit nulovací plyn a kalibrační plyny pro plný rozsah tak, aby obsahovaly vyšší nebo nižší koncentrace O2, a zopakovat ověření,

iii)

upravit průtoky vzduchu pro hořák FID, paliva a odebraného vzorku. Pokud se průtoky seřídí na THC FID, aby došlo ke splnění požadavků ověření rušivého vlivu O2, je nutné nastavit znovu RF CH4 pro jeho příští ověření. Ověření rušivého vlivu O2 se po úpravách zopakuje a určí se RF CH4,

iv)

opravit, vyměnit analyzátor FID a zopakovat ověření rušivého vlivu O2.

8.1.10.3   Penetrační frakce separátoru uhlovodíků jiných než methan (vyhrazeno)

8.1.11.   Měření NOx

8.1.11.1   Ověření utlumujícího rušivého vlivu CO2 a H2O u CLD

8.1.11.1.1   Oblast působnosti a frekvence

Měří-li NOx analyzátor CLD, musí se míra utlumujícího rušivého vlivu H2O a CO2 ověřit po počáteční instalaci analyzátoru CLD a po větší údržbě.

8.1.11.1.2   Principy měření

H2O a CO2 mohou negativně ovlivňovat odezvu CLD na NOx kolizním utlumujícím rušivým vlivem, který tlumí chemiluminiscenční reakci, již CLD používá za účelem zjištění NOx. Pomocí tohoto postupu a výpočtů podle bodu 8.1.11.2.3 se stanoví utlumující rušivý vliv a jeho výsledky se vyjádří jako maximální molární podíl H2O a maximální koncentrace CO2, které se očekávají během zkoušky emisí. Jestliže analyzátor CLD používá algoritmy ke kompenzaci rušivého vlivu pracující s přístroji, které měří H2O a/nebo CO2, musí se rušivý vliv vyhodnotit s těmito přístroji v činnosti a s použitím kompenzačních algoritmů.

8.1.11.1.3   Požadavky na systém

V případě měření se zředěním nesmí kombinovaný utlumující rušivý vliv H2O a CO2 u analyzátoru CLD přesáhnout ±2 %. V případě měření v surovém stavu nesmí kombinovaný utlumující rušivý vliv H2O a CO2 u analyzátoru CLD přesáhnout ±2,5 %. Kombinovaný utlumující rušivý vliv představuje součet utlumujícího rušivého vlivu CO2 podle bodu 8.1.11.1.4 a utlumujícího rušivého vlivu H2O podle bodu 8.1.11.1.5. Nejsou-li tyto požadavky splněny, je nutné analyzátor opravit nebo vyměnit. Před provedením zkoušky emisí je třeba ověřit, že analyzátor funguje řádně.

8.1.11.1.4   Postup pro ověření utlumujícího rušivého vlivu CO2

Pro určení utlumujícího rušivého vlivu CO2 lze použít následující metodu nebo metodu předepsanou výrobcem přístroje s tím, že se použije dělič plynů, který smísí dvousložkové kalibrační plyny pro plný rozsah s nulovacím plynem jako ředidlem a který splňuje specifikace v bodu 9.4.5.6, případně se jiný postup stanoví na základě osvědčeného technického úsudku:

a)

Propojení se vytvoří z potrubí z PTFE nebo z nerezavějící oceli;

b)

Nakonfiguruje se dělič plynů, aby se smísila téměř stejná množství kalibračního plynu pro plný rozsah a ředicích plynů;

c)

Pokud má analyzátor CLD provozní režim, ve kterém detekuje pouze NO na rozdíl od celku NOx, provozuje se tento analyzátor CLD v provozním režimu pouze pro NO;

d)

Je nutné použít kalibrační plyn CO2 pro plný rozsah, který splňuje specifikace v bodu 9.5.1 a který má koncentraci přibližně dvojnásobku maximální koncentrace CO2 očekávané během zkoušky emisí;

e)

Je nutné použít kalibrační plyn NO pro plný rozsah, který splňuje specifikace v bodě 9.5.1 a který má koncentraci přibližně odpovídající dvojnásobku maximální koncentrace NO očekávané během zkoušky emisí. Pokud je očekávaná koncentrace NO nižší než minimální rozsah pro ověření, který specifikoval výrobce přístroje, lze za účelem získání přesného ověření použít vyšší koncentraci podle doporučení výrobce přístroje a osvědčeného technického úsudku;

f)

Analyzátor CLD se vynuluje a zkalibruje pro plný rozsah. Analyzátor CLD se zkalibruje pro plný rozsah kalibračním plynem NO podle písm. e) tohoto bodu pomocí děliče plynů, kalibrační plyn NO pro plný rozsah se připojí ke kalibračnímu portu děliče plynů, nulovací plyn se připojí k ředicímu portu děliče plynů, použije se stejný nominální směšovací poměr, jaký byl zvolen v písm. b) tohoto bodu, a výstupní koncentrace NO z děliče plynů se použije ke kalibrování analyzátoru CLD pro plný rozsah. Případně se provede korekce vlastností plynů s cílem zajistit přesné rozdělení plynů;

g)

Kalibrační plyn CO2 pro plný rozsah se přivede ke kalibračnímu portu děliče plynů;

h)

Kalibrační plyn NO pro plný rozsah se přivede k ředicímu portu děliče plynů;

i)

Při průtoku NO a CO2 děličem plynů je výstup z děliče stabilizován. Určí se koncentrace CO2 z výstupu děliče plynů a případně se provede korekce vlastností plynů s cílem zajistit přesné rozdělení plynů. Tato koncentrace x CO2act se zaznamená a slouží pro výpočet ověření utlumujícího rušivého vlivu podle bodu 8.1.11.2.3. Alternativně lze místo děliče plynů použít jiné jednoduché zařízení ke směšování plynů. V takovém případě se k určení koncentrace CO2 použije analyzátor. Pokud se použije NDIR spolu s jednoduchým zařízením ke směšování plynů, musí splňovat požadavky tohoto oddílu a musí být kalibrován kalibračním plynem CO2 pro plný rozsah podle písm. d) tohoto bodu. Předtím je nutné zkontrolovat linearitu analyzátoru NDIR v celém rozsahu až do dvojnásobku maximální koncentrace CO2, která se očekává během zkoušky;

j)

Koncentrace NO se měří za děličem plynů s analyzátorem CLD. Ponechá se určitý čas, aby se odezva analyzátoru stabilizovala. Doba stabilizace může zahrnovat čas k pročištění přenosového potrubí a čas potřebný k odezvě analyzátoru. Když analyzátor měří koncentraci vzorku, zaznamenají se údaje shromažďované v průběhu 30 sekund. Z těchto údajů se vypočítá aritmetická střední hodnota x NOmeas. Hodnota x NOmeas se zaznamená a slouží pro výpočet ověření utlumujícího rušivého vlivu podle bodu 8.1.11.2.3;

k)

Na základě koncentrace kalibračního plynu pro plný rozsah se vypočte skutečná koncentrace NO ve výstupu děliče plynů (x NOact) a x CO2act pomocí rovnice (6-24). Vypočtená hodnota se použije pro výpočet ověření utlumujícího rušivého vlivu pomocí rovnice (6-23);

l)

Hodnoty zaznamenané podle bodů 8.1.11.1.4 a 8.1.11.1.5 slouží k výpočtu utlumujícího rušivého vlivu podle bodu 8.1.11.2.3.

8.1.11.1.5   Postup pro ověření utlumujícího rušivého vlivu H2O

Pro určení utlumujícího rušivého vlivu H2O lze použít následující metodu nebo metodu předepsanou výrobcem přístroje či jiný postup stanovený na základě osvědčeného technického úsudku:

a)

Propojení se vytvoří z potrubí z PTFE nebo z nerezavějící oceli;

b)

Pokud má analyzátor CLD provozní režim, ve kterém detekuje pouze NO na rozdíl od celku NOx, provozuje se tento analyzátor CLD v provozním režimu pouze pro NO;

c)

Je nutné použít kalibrační plyn NO pro plný rozsah, který splňuje specifikace v bodu 9.5.1 a který má koncentraci přibližně maximální koncentrace NO očekávané během zkoušky emisí. Pokud je očekávaná koncentrace NO nižší než minimální rozsah pro ověření, který specifikoval výrobce přístroje, lze za účelem získání přesného ověření použít vyšší koncentraci podle doporučení výrobce přístroje a osvědčeného technického úsudku;

d)

Analyzátor CLD se vynuluje a zkalibruje pro plný rozsah. Analyzátor CLD se zkalibruje kalibračním plynem NO pro plný rozsah podle písm. c) tohoto bodu, koncentrace kalibračního plynu pro plný rozsah se zaznamená jako x NOdry a použije se pro výpočet ověření utlumujícího rušivého vlivu v bodě 8.1.11.2.3;

e)

Kalibrační plyn NO pro plný rozsah se zvlhčí probubláváním destilovanou vodou v utěsněné nádobě. Pokud vzorek zvlhčeného kalibračního plynu NO pro plný rozsah neprochází pro účely této ověřovací zkoušky vysoušečem, reguluje se teplota v nádobě tak, aby se vytvářela úroveň H2O přibližně rovná maximálnímu molárnímu podílu H2O, který se očekává během zkoušky emisí. Pokud vzorek zvlhčeného kalibračního plynu NO pro plný rozsah neprochází vysoušečem vzorku během ověření utlumujícího rušivého vlivu podle bodu 8.1.11.2.3, kvantifikuje se naměřený utlumující rušivý vliv H2O jako nejvyšší molární podíl H2O, který se očekává během zkoušky emisí. Pokud vzorek zvlhčeného kalibračního plynu NO pro plný rozsah neprochází pro účely této ověřovací zkoušky vysoušečem, reguluje se teplota v nádobě tak, aby se vytvořila úroveň H2O přinejmenším o takové výši, jaká se požaduje v bodě 9.3.2.3.1. V takovém případě výpočty ověření rušivého vlivu podle bodu 8.1.11.2.3 nekvantifikují naměřený utlumující rušivý vliv H2O;

f)

Do odběrného systému se zavede zvlhčený zkušební plyn NO. Lze jej zavést před vysoušeč, který se použije v průběhu zkoušek emisí, nebo za něj. V závislosti na bodě, kde je vzorek zaveden, se zvolí příslušná metoda výpočtu podle písm. e) tohoto bodu. Vysoušeč vzorku musí projít ověřením podle bodu 8.1.8.5.8;

g)

Změří se molární podíl H2O ve zvlhčeném kalibračním plynu NO pro plný rozsah. V případě použití vysoušeče vzorku se molární podíl H2O ve zvlhčeném kalibračním plynu NO pro plný rozsah měří za tímto vysoušečem (x H2Omeas). Doporučuje se měřit x H2Omeas co nejblíže ke vstupu analyzátoru CLD. Hodnotu x H2Omeas lze vypočítat z naměřených hodnot rosného bodu (T dew) a absolutního tlaku (p total);

h)

Kondenzaci v přenosovém potrubí, závitech nebo ventilech mezi bodem, ve kterém se měří x H2Omeas, a analyzátorem, se zabrání použitím osvědčeného technického úsudku; Doporučuje se taková konstrukce systému, ve které jsou teploty stěn v přenosovém potrubí, šroubení a ventilech mezi bodem, ve kterém se měří x H2Omeas, a analyzátorem nejméně o 5 K vyšší, nežli lokální rosný bod odebraného vzorku plynu;

i)

Koncentrace zvlhčeného kalibračního plynu NO pro plný rozsah se měří analyzátorem CLD. Ponechá se určitý čas, aby se odezva analyzátoru stabilizovala. Doba stabilizace může zahrnovat čas k odvodnění přenosového potrubí a čas potřebný k odezvě analyzátoru. Když analyzátor měří koncentraci vzorku, zaznamenají se údaje shromažďované v průběhu 30 sekund. Z těchto údajů se vypočítá aritmetická střední hodnota x NOwet. Hodnota x NOwet se zaznamená a slouží pro výpočet ověření utlumujícího rušivého vlivu podle bodu 8.1.11.2.3.

8.1.11.2   Výpočty pro ověření utlumujícího rušivého vlivu analyzátoru CLD

Výpočty pro ověření utlumujícího rušivého vlivu analyzátoru CLD se provádí podle popisu v tomto bodě.

8.1.11.2.1   Množství vody očekávané během zkoušky

Maximální očekávaný molární podíl vody v průběhu zkoušky emisí (x H2Oexp ) se odhadne. Tento odhad je nutné provést tam, kde byl zaveden zvlhčený kalibrační plyn NO pro plný rozsah podle písm. f) bodu 8.1.11.1.5. Když se odhaduje maximální očekávaný molární podíl vody, je nutné zohlednit maximální očekávaný obsah vody ve spalovacím vzduchu, ve spalinách paliva a případně v ředicím vzduchu. Pokud se během ověřovací zkoušky zavádí zvlhčený kalibrační plyn NO pro plný rozsah do odběrného systému před vysoušeč vzorku, není nutné odhadovat maximální očekávaný molární podíl vody a x H2Oexp se stanoví jako rovné x H2Omeas.

8.1.11.2.2   Množství CO2 očekávané během zkoušky

Maximální množství CO2 očekávané během zkoušky emisí (x CO2exp ) se odhadne. Tento odhad se provede v odběrném systému tam, kde se zavádí smísené kalibrační plyny NO a CO2 pro plný rozsah podle písm. j) bodu 8.1.11.1.4. Při odhadování maximální očekávané koncentrace CO2 je nutné zohlednit maximální očekávaný obsah CO2 ve spalinách a v ředicím vzduchu.

8.1.11.2.3   Výpočty kombinovaného utlumujícího vlivu H2O a CO2

Kombinovaný utlumující rušivý vliv H2O a CO2 se vypočítá pomocí rovnice (6-23):

Formula

(6-23)

kde:

quench =

množství utlumujícího rušivého vlivu analyzátoru CLD

x NOdry

je naměřená koncentrace NO v místě před probublávačem, podle písm. d) bodu 8.1.11.1.5

x NOwet

je naměřená koncentrace NO v místě za probublávačem, podle písm. i) bodu 8.1.11.1.5

x H2Oexp

je maximální očekávaný molární podíl vody během zkoušky emisí podle bodu 8.1.11.2.1

x H2Omeas

je naměřený molární podíl vody během ověření utlumujícího rušivého vlivu podle písm. g) bodu 8.1.11.1.5

x NOmeas

je naměřená koncentrace NO, když se kalibrační plyn NO pro plný rozsah smísí s kalibračním plynem CO2 pro plný rozsah, podle písm. j) bodu 8.1.11.1.4

x NOact

je skutečná koncentrace NO, když se kalibrační plyn NO pro plný rozsah smísí s kalibračním plynem CO2 pro plný rozsah, podle písm. k) bodu 8.1.11.1.4 a vypočtená pomocí rovnice (6-24)

x CO2exp

je maximální očekávaná koncentrace CO2 během zkoušky emisí podle bodu 8.1.11.2.2

x CO2act

je skutečná koncentrace CO2, když se kalibrační plyn NO pro plný rozsah smísí s kalibračním plynem CO2 pro plný rozsah, podle písm. i) bodu 8.1.11.1.4

Formula

(6-24)

kde:

x NOspan

je koncentrace kalibračního plynu NO pro plný rozsah na vstupu do děliče plynů, podle písm. e) bodu 8.1.11.1.4

x CO2span

je koncentrace kalibračního plynu CO2 pro plný rozsah na vstupu do děliče plynů, podle písm. d) bodu 8.1.11.1.4

8.1.11.3   Ověření rušivého vlivu HC a H2O u analyzátoru NDUV

8.1.11.3.1   Oblast působnosti a frekvence

Měří-li se NOx analyzátorem NDUV, musí se ověřit míra rušivého vlivu H2O a uhlovodíků po počáteční instalaci analyzátoru a po větší údržbě.

8.1.11.3.2   Principy měření

Uhlovodíky a H2O mohou mít pozitivní rušivý vliv na analyzátor NDUV tím, že způsobují odezvu podobnou jako NOx. Jestliže analyzátor NDUV pracuje s kompenzačními algoritmy, které používají měření jiných plynů k ověření tohoto rušivého vlivu, musí se zároveň taková měření provádět za účelem přezkoušení algoritmů v průběhu ověřování rušivého vlivu působících na analyzátor.

8.1.11.3.3   Požadavky na systém

Na analyzátor NDUV pro NOx může působit kombinovaný rušivý vliv H2O a uhlovodíků, který je v rozmezí ± 2 % střední koncentrace NOx.

8.1.11.3.4   Postup

Kontrola rušivého vlivu se provede následovně:

a)

Analyzátor NDUV pro NOx se spustí, provozuje a nastaví na nulu a na plný rozsah podle návodu výrobce přístroje;

b)

K provedení tohoto ověření se doporučuje oddělit výfukový plyn z motoru. K určení množství NOx ve výfukovém plynu se použije analyzátor CLD, který splňuje specifikace bodu 9.4. Odezva CLD se použije jako referenční hodnota. Ve výfukovém plynu se analyzátorem FID, který splňuje specifikace bodu 9.4, měří také uhlovodíky. Odezva FID se použije jako referenční hodnota uhlovodíků;

c)

Výfukový plyn z motoru se zavede do analyzátoru NDUV před vysoušečem vzorku plynu, pokud se vysoušeč při zkoušce používá;

d)

Ponechá se určitý čas, aby se odezva analyzátoru stabilizovala. Doba stabilizace může zahrnovat čas k pročištění přenosového potrubí a čas potřebný k odezvě analyzátoru;

e)

V době, kdy všechny analyzátory měří koncentraci vzorku, se musí zaznamenávat údaje nahromaděné v průběhu 30 sekund a vypočítat aritmetické průměry ze tří analyzátorů;

f)

Střední hodnota z CLD se odečte od střední hodnoty z NDUV;

g)

Tento rozdíl se vynásobí poměrem očekávané střední koncentrace uhlovodíků ke koncentraci uhlovodíků naměřené v průběhu ověřování. Analyzátor vyhověl při ověření rušivého vlivu podle tohoto bodu, pokud je výsledek v rozmezí ±2 % koncentrace NOx, která se očekává jako standardní, jak je stanoveno v rovnici (6-25):

Formula

(6-25)

kde:

Formula

je střední koncentrace NOx naměřená analyzátorem CLD [μmol/mol] nebo [ppm]

Formula

je střední koncentrace NOx naměřená analyzátorem NDUV [μmol/mol] nebo [ppm]

Formula

je střední koncentrace naměřených uhlovodíků [μmol/mol] nebo [ppm]

Formula

je střední koncentrace naměřených uhlovodíků, očekávaná jako standardní [μmol/mol] nebo [ppm]

Formula

je střední koncentrace naměřených NOx, očekávaná jako standardní [μmol/mol] nebo [ppm]

8.1.11.4   Vysoušeč vzorku odebírající NO2

8.1.11.4.1   Oblast působnosti a frekvence

Toto ověření penetrace NO2 do vysoušeče vzorků je nutné provést, pokud se k vysoušení odebraného vzorku před přístrojem k měření NOx použije vysoušeč vzorků, avšak před chladicí lázní se nepoužije žádný konvertor NO2 na NO. Toto ověření je nutné provést po počáteční instalaci a po větší údržbě.

8.1.11.4.2   Principy měření

Vysoušeč vzorku odstraňuje vodu, která jinak může mít na měření NOx rušivý vliv. Tekutá voda, která zůstává v nedokonale konstruované chladicí lázni, může ze vzorku odebírat NO2. Jestliže je použit vysoušeč vzorku bez před ním umístěného konvertoru NO2 na NO, mohl by odebírat NO2 ze vzorku před měřením NOx.

8.1.11.4.3   Požadavky na systém

Vysoušeč vzorku musí být schopen změřit nejméně 95 % celkového množství NO2 při maximální očekávané koncentraci NO2.

8.1.11.4.4   Postup

K ověření vlastností vysoušeče vzorku se postupuje takto:

(a)

Nastavení přístroje. Pro nastartování a provozování se postupuje podle instrukcí výrobce analyzátoru a vysoušeče vzorku. Analyzátor a vysoušeč vzorku se seřídí takovým způsobem, aby byly jejich vlastnosti optimální;

(b)

Nastavení přístrojů a sběr údajů:

i)

analyzátory celku plynů NOx se vynulují a zkalibrují pro plný rozsah, jako před zkouškou emisí,

ii)

zvolí se kalibrační plyn NO2 (bilančním plynem je suchý vzduch) s koncentrací NO2 blízkou maximální hodnotě, která se očekává během zkoušky. Pokud je očekávaná koncentrace NO2 nižší než minimální rozsah pro ověření, který specifikoval výrobce přístroje, lze za účelem získání přesného ověření použít vyšší koncentraci podle doporučení výrobce přístroje a osvědčeného technického úsudku,

iii)

tento kalibrační plyn protéká přes sondu systému pro odběr vzorků nebo přetokové šroubení. Umožní se stabilizace odezvy na celkové množství NOx zohledňující pouze transportní zpoždění a odezvu přístroje,

iv)

vypočítá se střední hodnota z údajů celkových NOx zaznamenávaných po dobu 30 sekund a tato hodnota se zanese jako x NOxref,

v)

průtok kalibračního plynu NO2 se zastaví,

vi)

dalším krokem je, že se odběrný systém nasytí přetokem výstupu generátoru rosného bodu, nastaveného na rosný bod při 323 K (50 °C), až do sondy odběrného systému plynu nebo přetokového šroubení. Z výtoku z generátoru rosného bodu se odebírá vzorek pomocí odběrného systému a vysoušeče vzorku po dobu nejméně 10 minut až do stavu, kdy dle očekávání vysoušeč vzorku odnímá vodu konstantním tokem,

vii)

pak se okamžitě přepne zpět na přetékání kalibračního plynu NO2 za účelem určení x NOxref. Umožní se stabilizace odezvy na celkové množství NOx zohledňující pouze transportní zpoždění a odezvu přístroje. Vypočítá se střední hodnota z údajů celkových NOx zaznamenávaných po dobu 30 sekund a tato hodnota se zanese jako x NOxmeas,

viii)

hodnota x NOxmeas se koriguje na hodnotu x NOxdry na základě rezidua vodní páry, která prošla vysoušečem vzorku při teplotě a tlaku na jeho výstupu;

(c)

Hodnocení vlastností Pokud je x NOxdry menší než 95 % x NOxref, je nutné vysoušeč vzorku opravit nebo vyměnit.

8.1.11.5   Ověření konverze NO2 na NO konvertorem

8.1.11.5.1   Oblast působnosti a frekvence

Pokud se k určení NOx použije analyzátor, který měří pouze NO, je nutné použít před analyzátorem konvertor NO2 na NO. Toto ověření se provádí po instalaci konvertoru, po větší údržbě a v období 35 dnů před zkouškou emisí. Ověření se opakuje s touto frekvencí s cílem ověřit, že nedošlo ke zhoršení katalytické činnosti konvertoru NO2 na NO.

8.1.11.5.2   Principy měření

Konvertor NO2 na NO umožňuje, aby analyzátor měřící pouze NO určil celkové NOx, a to pomocí konverze NO2 ve výfukovém plynu na NO.

8.1.11.5.3   Požadavky na systém

Konvertor NO2 na NO musí být schopen změřit nejméně 95 % celkového množství NO2 při maximální očekávané koncentraci NO2.

8.1.11.5.4   Postup

Vlastnosti konvertoru NO2 na NO se ověřují tímto postupem:

a)

Při zapojení přístroje se postupuje podle instrukcí výrobce analyzátoru a konvertoru NO2 na NO pro nastartování a provoz. Analyzátor a konvertor se nastaví pro optimalizaci vlastností;

b)

Vstup ozonizátoru se připojí na zdroj nulovacího vzduchu nebo kyslíku a jeho výstup se připojí k jednomu portu třícestného šroubení ve tvaru T. Kalibrační plyn NO pro plný rozsah se připojí k dalšímu portu a k poslednímu portu se připojí vstup konvertoru NO2 na NO;

c)

Tato kontrola se provádí těmito kroky:

i)

uzavře se přívod vzduchu do ozonizátoru a vypne se přívod proudu do ozonizátoru a konvertor NO2 na NO se přepne do režimu obtoku (tj. do režimu NO). Umožní se stabilizace zohledňující pouze transportní zpoždění a odezvu přístroje,

ii)

průtoky NO a nulovacího plynu se upraví tak, aby se koncentrace NO v analyzátoru blížila špičkové hodnotě koncentrace celkových NOx, která se očekává během zkoušky. Směs plynů musí mít obsah NO2 menší než 5 % koncentrace NO. Koncentrace NO se zjistí výpočtem střední hodnoty údajů z analyzátoru shromažďovaných v průběhu 30 sekund a tato hodnota se zaznamená jako x NOref. Pokud je očekávaná koncentrace NO nižší než minimální rozsah pro ověření, který specifikoval výrobce přístroje, lze za účelem získání přesného ověření použít vyšší koncentraci podle doporučení výrobce přístroje a osvědčeného technického úsudku,

iii)

otevře se přívod O2 do ozonizátoru a jeho průtok do ozonizátoru se seřídí, aby hodnota NO udávaná analyzátorem byla přibližně o 10 % nižší než x NOref. Konc